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Abstract 
 
Fish are a rich source of the n-3 polyunsaturated fatty acids (PUFA), particularly the 

highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA; 20:5n-3) and 

docosahexaenoic (DHA; 22:6n-3) acids, which are vital constituents for cell membrane 

structure and function, but which are also highly susceptible to attack by oxygen and other 

organic radicals.  Resultant damage to PUFA in membrane phospholipids can have serious 

consequences for cell membrane structure and function, with potential pathological effects 

on cells and tissues. Physiological antioxidant protection involves both endogenous 

components, such as free radical scavenging enzymes, and exogenous dietary micronutrients 

including tocopherols and tocotrienols, the vitamin E-type compounds, widely regarded as 

the primary lipid soluble antioxidants. The antioxidant activities of tocopherols are 

imparted by their ability to donate their phenolic hydrogen atoms to lipid (fatty acid) free 

radicals resulting in the stabilisation of the latter and the termination of the lipid 

peroxidation chain reaction. However, tocopherols can also prevent PUFA peroxidation by 

acting as quenchers of singlet oxygen.  Recent studies on marine fish have shown 

correlations between dietary and tissue PUFA/tocopherol ratios and incidence of lipid 

peroxidation as indicated by the levels of TBARS and isoprostanes. These studies also 

showed that feeding diets containing oxidised oil significantly affected the activities of 

liver antioxidant defence enzymes and that dietary tocopherol partially attenuated these 

effects.  However, there is evidence that dietary tocopherols can affect fatty acid 

metabolism in other ways.  An increase in membrane PUFA was observed in rats deficient 

in vitamin E. This was suggested to be due to over production of PUFA arising from 

increased activity of the desaturation/elongation mechanisms responsible for the synthesis 

of PUFA. Consistent with this, increased desaturation of 18:3n-3 and 20:5n-3 in 

hepatocytes from salmon fed diets deficient in tocopherol and/or astaxanthin has been 

observed.  Although the mechanism is unclear, tocopherols may influence biosynthesis of 

n-3PUFA through alteration of cellular oxidation potential or “peroxide tone”. 
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Introduction 

Vitamin E is a minor component present among the lipid constituents of cell membranes 

and lipoproteins. The vitamin E-type compounds, tocopherols and tocotrienols, are not 

synthesised by animals and must be obtained in the diet, ultimately from higher plant and 

algal sources (Hess 1993). Tocopherols are widely regarded as the primary lipid soluble 

exogenous antioxidant nutrients (Buettner 1993; Kamal-Eldin and Appelqvist 1996; Wang 

and Quinn 1999).  Their antioxidant effects are imparted partly by their ability to donate 

their phenolic hydrogen atoms to lipid free radicals resulting in termination of the lipid 

peroxidation chain reaction (Burton and Ingold 1989) and partly by acting as quenchers of 

singlet oxygen free radicals to prevent damage to tissues and specifically to unsaturated 

lipids (Gorman et al. 1984; Wang and Quinn 1999). The relative antioxidant efficacies of 

the tocopherols in vivo have been established as α > β > γ > δ (Burton and Traber 1990; 

Wang and Quinn 1999) with α-tocopherol identified as the major naturally occurring 

tocopherol in the lipids of marine fish and salmon (Ackman and Cormier 1978; Parazo et 

al. 1998). Moreover, vitamin E has been found to possess functions that are independent 

of its/ antioxidant/radical scavenging capacity such as effects on protein kinase, gene 

expression, cell proliferation and disease (Azzi and Stocker 2000) and enhance immune 

responses of fish (Ortuño et al. 2000). However, the effects of tocopherols (vitamin E) on 

cellular oxidation potential or “peroxide tone” may affect lipid metabolism in other ways 

including alteration of fatty acid desaturation and/or elongation.  This article reviews the 

mechanisms of oxidative stress and lipid peroxidation, and the effects of vitamin E in fish, 

focusing on both its role in an integrated antioxidant defence mechanism and its effects on 

the biosynthesis of highly unsaturated fatty acids (HUFA). 

 
 
Biochemistry of Oxidative Stress 

 

Reactive Oxygen Species (ROS).   Molecular oxygen (O2) is essential for aerobic 

organisms, with its dominant role in eukaryotes being that of terminal electron acceptor 

in mitochondrial respiration, where it is ultimately reduced to water during the process of 

oxidative phosphorylation, the major source of ATP in aerobes. The reduction of O2 to 

water requires four electrons, and this reduction proceeds sequentially through one-, two-, 
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and three-electron products. These univalent reductions of O2 to water occur as presented 

in the following equations: 

O2 + e-  O2
•-  

O2
•- + e- + 2H+  H2O2  

H2O2 + e- + H+  ·OH + H2O  

·OH + e-  H2O  

The sum result of these four reactions being: 

O2 + 4e-  2 H2O 

The products of the sequential reductions depicted in the first three equations are the 

superoxide radical anion (O2
•-), hydrogen peroxide (H2O2), and the hydroxyl radical 

(·OH), respectively. These activated or reactive oxygen species (ROS), particularly ·OH, 

are very reactive and potentially deleterious to biological systems. Both O2
•- and ·OH are 

oxygen-based free radicals (oxyradicals). Although not a free radical, that is, one 

possessing an unshared electron, H2O2 is also reactive and serves as an important 

precursor of ·OH by reacting with O2
- through the Haber-Weiss reaction below. 

O2
•- + H2O2  ·OH + OH- + O2 

This reaction, although thermodynamically favorable, is kinetically slow but is catalysed 

by transition metals such as iron and copper. Thus, metal-catalyzed (i.e. chelated iron) 

Haber-Weiss reactions are an important source of ·OH in biological systems. Other 

important species of activated oxygen include singlet oxygen (1O2), and alkoxy radicals 

(RO·), and peroxy radicals (ROO·) formed by oxidation of organic molecules and, in 

particular, lipids and fatty acids (see below). In addition to mitochondrial electron 

transport, other sources of endogenous  ROS production include the electron transport 

chains of microsomes (Winston and Cederbaum 1983) and chloroplasts (Asada el al. 

1974), the respiratory burst asssociated with phagocytosis by leukocytes (Chung and 

Secombes 1988) and the activities of enzymes such as xanthine oxidase, tryptophan 

dioxygenase, diamine oxidase, and prostaglandin synthase (Fridovich 1978; Halliwell 

1978).  

 

Oxidative damage.     ROS and free radicals can react with a large variety of 

biomolecules and in a rather non-specific manner, particularly in the case of highly 
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reactive radicals such as ·OH.  Lesions associated with ROS include oxidation of 

membrane lipids, proteins, and nucleic acids and altered cellular redox status, resulting in 

the tissue pathologies often associated with red-ox active contaminants, and possibly 

chemical carcinogenesis and aging (Ames 1989).  The role of ROS and free radical 

intermediates in DNA alterations, including adduct formation, is a topic of intense 

research interest with the most specific genotoxic effect being the oxidation of DNA 

resulting in oxidized bases such as thymine glycols and 8-hydroxyguanine (Dizdaroglu 

and Bergtold 1986).  In erythrocytes, hemoglobin can also be a target for ROS attack 

resulting in the formation of methemoglobin (MetHb) in which the iron centers of the 

heme moieties are oxidized (Fe3+), preventing the molecules from functioning normally 

in O2 binding and transport (Stern 1985). In fish, excess buildup of nitrite due to 

incomplete ammonia oxidation is a relatively common problem in aquaculture that results 

in methemoglobinemia, or “brown blood” disease, so named after the dark colour of 

MetHb (Bowser et al. 1983). The examples described above demonstrate consequences 

of ROS attack on nucleic acids and proteins, however this article is primarily concerned 

with oxidative damage to another major group of biomolecules, the lipids, and this is 

described below. 

  

Lipid peroxidation.     Lipid peroxidation can be defined as the “oxidative deterioration of 

polyunsaturated fatty acids (PUFA)”, and is an important consequence of oxidative 

stress. Lipid peroxidation proceeds by a chain reaction whereby a single radical species 

has the ability to propagate a number of deleterious biochemical reactions (Fig.1). Lipid 

peroxidation can be initiated by the ROS -mediated, particularly ·OH, abstraction of a 

hydrogen atom from a methylene group of a PUFA yielding a lipid radical. This organic 

radical can be stabilized by molecular rearrangement to a conjugated diene radical which 

readily reacts with O2 to produce the peroxy radical. The peroxy radical can readily 

abstract a hydrogen from another methylene group of PUFA to yield a lipid 

hydroperoxide, and a new lipid radical, which can continue propagating additional lipid 

hydroperoxide and lipid radicals in a chain reaction. Lipid hydroperoxides are relatively 

stable in isolation, but can react with transition metal complexes to yield alkoxyl radicals. 

The lipid peroxidation chain reaction can be terminated by two lipid radicals reacting to 
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form a non-radical product or by quenching by a radical scavenger such as tocopherol (or 

similar antioxidant molecule) (Fig.1).  In general, the overall effects of lipid peroxidation 

are to decrease membrane fluidity, increase the permeability of the membrane to 

normally impermeable substances, and inactivate membrane-bound enzymes.  For 

example, lipid peroxidation of erythrocyte membranes alters their ability to change shape 

and pass through capillaries and eventually leads to haemolysis (Halliwell and Gutteridge 

1996). Continued fragmentation of fatty acid side chains to produce potentially toxic 

compounds such as aldehydes and hydrocarbons will eventually lead to complete loss of 

membrane integrity (Fig.1). Peroxidation-induced damage to the lysosome membrane can 

result in hydrolytic enzymes escaping into the cell cytoplasm, further damaging the cell.  

 

Antioxidant defence mechanisms.   An array of antioxidant defence mechanisms to 

detoxify ROS has evolved to counter the potentially deleterious effects of activated 

oxygen (Yu 1994). Antioxidant compounds can be classified as water-soluble reductants 

such as glutathione, uric acid, and ascorbic acid (vitamin C), or as lipid-soluble radical 

scavengers, chief amongst which are the subject of this volume, the tocopherols (vitamin 

E), but which also include retinol (vitamin A), carotenoids and various xanthophylls.  

“Antioxidant enzymes” include radical scavenging enzymes such as superoxide 

dismutase (SOD) and catalase, peroxidases such as glutathione peroxidase (GPX), and 

glutathione reductase (GR) (Fig.1). Thus, components of both endogenous and 

exogenous origins contribute protection (Jacob 1995), and interactions between 

components and synergistic effects have been described. For instance, it is well 

documented that ascorbate can provide protection synergistically with α-tocopherol 

(Leung et al. 1981). 

 The antioxidant enzymes comprise a series of enzyme scavengers of oxyradicals 

and other free radicals. SOD is a group of metalloenzymes that converts O2
-· to H2O2 

(Fridovich 1986).  SOD plays a pivotal antioxidant role, catalyzes the dismutation of O2
-· 

at rates approximating diffusion limits, making it among the most active enzymes 

described. Numerous studies have indicated induction of SOD in many organisms by 

factors associated with increased oxyradical production, such as elevated O2 and 

exposure to redox-active contaminants. The product of SOD activity, H2O2, can be 



 7 

removed by the activities of catalase or peroxidases such as GPX (Fig.1). Catalase is 

associated primarily with peroxisomes, where it detoxifies H2O2 arising as a by-product 

of fatty acid oxidation (Fahimi and Sies 1987). GPX is a cytosolic and mitochondrial 

enzyme, and in addition to reducing H2O2, it can reduce lipid peroxides (ROOH) to their 

corresponding alcohols (ROH), an important reaction for quenching lipid-peroxidizing 

chain reactions (Reed 1990). GR plays an important antioxidant role by catalyzing the 

reduction of oxidised glutathione (GSSG) to glutathione (GSH) at the expense of 

NADPH (Reed 1990) and, thereby, recycling antioxidant cofactor molecules.  

 Like all aerobic organisms, fish are susceptible to the attack of ROS and have 

developed antioxidant defences including low-molecular-weight antioxidants together 

with adapted antioxidant enzymes. Therefore, to prevent oxidative damage, effective 

antioxidant defences are, in part, dependent on the adequate dietary supply of essential 

antioxidants, including vitamin E. Some recent reviews in the literature have dealt with 

information about oxidative stress and antioxidant defences in fish in relation to specific 

situations including pollution and aquaculture (Livingstone 2003), environment and 

temperature (Abele and Puntarulo 2004), egg and larval quality (Palace and Werner 

2006), and a range of biotic and abiotic factors (Martínez-Alvarez et al. 2005).  

 

Tocopherols, Oxidative Stress and Lipid Peroxidation in Fish 

 
Oxidative stress and lipid peroxidation.  The fundamental aspects of oxyradical 

production, antioxidant defences, and biochemical manifestations of oxidative injury are 

shared among biological systems including fish. Deleterious cellular effects associated 

with oxidative stress, such as lipid peroxidation, methemoglobinemia, and DNA 

oxidations, have also been investigated in fish. In this regard, lipid peroxidation has 

received the greatest attention. Due to their poikilothermic nature, fish lipids are more 

highly unsaturated than those from homeotherms, particularly those adapted to cold water 

environments (Abele and Puntarulo 2004), which would seem to predispose them to lipid 

peroxidation. Indeed, in vivo lipid peroxidation caused by oxygen radicals is a principal 

cause of several diseases in fish such as jaundice (Sakai et al. 1989; 1998), nutritional 

muscular dystrophy (Watanabe et al. 1970; Murai and Andrews 1974; Cowey et al. 1984; 
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Bell et al. 1985; Frischknecht et al. 1994), haemolysis (Kawatsu 1969), liver 

degeneration, anemia, depletion of antioxidant vitamins, blood pathologies and myopathy 

of skeletal muscle (Cowey et al. 1984; Bell et al. 1985; Tacon 1992; Frischknecht et al. 

1994; Sargent et al. 2002) and development of skeletal abnormalities (Lewis-McCrea and 

Lall 2007).  Clearly, the presence of oxidised lipids can have toxic consequences for fish, 

whether they arise from dietary input of toxicants or by deficiencies in essential 

antioxidant nutrients. However, evidence suggests that pathological symptoms can be 

controlled or eliminated by supplying sufficient dietary antioxidant, particularly 

tocopherol, to prevent the production of excessive levels of free-radical generated toxic 

compounds (Cowey et al. 1984; Baudin-Laurencin et al. 1989; Baker and Davies 1997a; 

Livingstone 2003; Abele and Puntarulo 2004; Martínez-Alvarez et al. 2005). 

 

Role of tocopherol in preventing lipid peroxidation in fish.   The vitamin E requirements 

of many fish species have been established and generally fall in the range of 20-50 mg/kg 

dry feed (NRC 1993).  Specific deficiency symptoms include muscular dystrophy, 

exudative diathesis, anaemia, impaired erythropoiesis, erythrocyte fragility, skin 

discolouration and ceroid pigment deposition. 

 Recent research has focussed more on the relationship of tocopherol with 

increased dietary PUFA, temperature and interaction with other antioxidants. Thus, in 

fish, increased levels of dietary and tissue PUFA require increased dietary 

supplementation with tocopherol to prevent the occurrence of oxidative damage 

Watanabe et al. 1981; Cowey et al. 1981). A correlation between increased dietary PUFA 

and tocopherol requirement was found in blue tilapia (Roem et al. 1990), turbot (Stephan 

et al. 1995), carp (Runge et al. 1992) and Atlantic salmon (Waagbo et al. 1991). When 

fish are fed tocopherol deficient diets, there is a rapid loss of tocopherol from liver and 

muscle but a selective retention in the neural tissues of the brain and eye. In a study with 

Atlantic salmon, feeding a tocopherol deficient diet for a period of 22 weeks resulted in 

liver tocopherol levels falling to 3% of their original value, whereas levels in brain and 

eye were only reduced to 35 and 40% of their original values (Bell et al. 2000). These 

results suggest a selective conservation of tocopherol in tissues with a high n-3 HUFA 

content and probably reflect the functionality of n-3 HUFA-rich biomembranes in neural 
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tissues. In general, levels of tocopherol are higher in fish tissues than in mammals and 

this probably reflects the higher degree of antioxidant protection required in n-3 PUFA-

rich organisms (Hamre and Lie 1995; Martínez-Alvarez et al. 2005). In juvenile African 

catfish, elevated dietary tocopherol resulted in decreased levels of thiobarbituric-acid 

reactive substances (TBARS), common indicators of lipid peroxidation (Baker and 

Davies 1996a; 1997b), although doses of tocopherol above the requirement only 

marginally improved the protection against peroxidation. In contrast, Olsen et al. (1999) 

found that α-tocopherol did not influence the tissue TBARS content in juvenile Arctic 

char (Salvelinus alpinus L.), while high dietary PUFA increased the content of TBARS in 

liver and in muscle. Moreover, there is no evidence that dietary vitamin E above a 

minimum requirement does not significantly improve antioxidant defences and health of 

the fish (Olsen et al. 1999; Kiron et al. 2004). Nevertheless, vitamin E requirements 

depend not only on dietary lipids, but also on vitamin C (Olsen et al. 1999) since ascorbic 

acid, by donating electrons to the α-tocopheroxyl radical, reduces it back to functional α-

tocopherol (Tappel 1962).  

Several studies have suggested that carotenoids, including β-carotene, astaxanthin 

and canthaxanthin, are potent antioxidants in in vitro membrane models and that they 

operate synergistically with tocopherol (Krinsky 1993; Nishigaki et al. 1994; Fukuzawa et 

al. 1998). Thus, synergism between tocopherol and astaxanthin was recently observed in 

Atlantic salmon (Bell et al. 2000), and antioxidant synergism has also been observed 

between tocopherol and selenium in trout and salmon (Bell et al. 1985; Poston et al. 1976).   

Other potential synergistic effects include regeneration of α-tocopherol from its radical by 

glutathione (Wefers and Sies 1988) or dihydro-lipoic acid (Freiselben and Packer 1993). 

In addition, phospholipids having a primary amine group, e.g. phosphatidylethanolamine 

or phosphatidylserine, can function as peroxyl radical scavengers and thereby have a 

sparing effect on tocopherol (Lambelet et al. 1984), whereas phosphatidylinositol and 

other acidic phosphatides can act synergistically with tocopherols due to their metal 

chelating activity (Pokorny 1987; Ishihara 1996). Phospholipids were shown to enhance 

the antioxidant efficacy of tocopherols in oils by forming reverse micelles or micro 

emulsions, such that tocopherols were positioned in the micelles with their active phenolic 
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group adjacent to the polar region where peroxy radicals are concentrated (Kago and 

Terao 1995).  

 

Tocopherol and the Antioxidant Defence Enzymes 
 
Few studies have investigated the activities of antioxidant enzymes and concentrations of 

oxyradical scavengers, including tocopherol, in aquatic animals (Winston and Di Giulio 

1991; Abele and Puntarulo 2004; Martínez-Alvarez et al. 2005), and studies with fish 

have often failed to reveal consistent antioxidant responses (Di Giulio et al. 1995; Abele 

and Puntarulo 2004; Martínez-Alvarez et al. 2005).  The activities of the antioxidant 

enzymes have been measured in marine fish including dab (Limanda limanda) 

(Livingstone et al. 1992), sardine (Sardina pilchardus) (Peters et al. 1994), turbot larvae 

(Peters and Livingstone 1996) and Senegal sole larvae (Solé et al. 2004), and freshwater 

fish such as rainbow trout and black bullhead (Ameiurus melas) (Aceto et al. 1994; Otto 

and Moon 1996). These studies focussed on the role of the enzymes in pollutant 

detoxification (Peters et al. 1994) or developmental aspects (Aceto et al. 1994; Otto and 

Moon 1996; Peters and Livingstone 1996) rather than the effects of dietary nutrients. In 

mammals, the effects of dietary PUFA and tocopherol on the activity of the antioxidant 

enzymes in liver are contradictory.  However, supplementation of PUFA, including EPA, 

to Swiss 3T3 cells resulted in increased levels of PUFA in phospholipids and the 

activities of SOD, GPX and GST increased with degree of unsaturation of the 

phospholipids (Benito et al. 1997).  

            Previously, we showed that SOD and GST activities decreased as the 

PUFA/tocopherol ratio decreased during early development in unfed common dentex 

(Dentex dentex) larvae (Mourente et al. 1999a). Conversely, the activities of catalase and, 

to a lesser degree, GPX actually increased with decreasing PUFA/tocopherol ratio in that 

study. In a subsequent study on larval dentex, there were no significant effects on the 

antioxidant enzyme activities of increasing dietary HUFA, but in this study the level of 

dietary tocopherol increased in parallel with dietary HUFA (Mourente et al. 1999b).  

Similarily, no interactions were observed between dietary tocopherol and antioxidant 

enzyme activities in Atlantic salmon (Lygren et al. 2000).  
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    Recently, we showed that the level of dietary tocopherol had significant effects on the 

activities of the enzymes of the liver antioxidant defence system in juvenile marine fish 

(Mourente et al. 2000; Tocher et al. 2002). In the earlier trial, a clear relationship between 

liver PUFA/tocopherol ratio and the activities of the liver antioxidant enzymes was not 

observed in juvenile turbot (Scophthalmus maximus), halibut (Hippoglossus 

hippoglossus) and gilthead sea bream (Sparus aurata) (Mourente et al. 2000). This was 

possibly due to the level of dietary HUFA being insufficient to exert a significantly high 

oxidative load, and/or the level of tocopherol in the deficient diets was not sufficiently 

low. In a subsequent trial, the dietary HUFA load was increased and some significant 

effects on antioxidant enzyme activities were obtained that could have been predicted 

based on current knowledge.  Thus, higher activity of GPX in turbot fed a tocopherol 

deficient diet, and lower levels of catalase and GPX in halibut, and of catalase in sea 

bream fed a diet supplemented with high levels of tocopherol, were consistent with the 

expected pattern (Tocher et al. 2002).  

        These studies suggested that feeding high HUFA diets and/or decreased tocopherol, 

resulted in signs of increased peroxidative stress in juvenile marine fish, as evidenced by 

increased levels of tissue lipid peroxidation products, but only moderate effects on liver 

antioxidant defence enzyme activities were observed (Tocher et al. 2002). In a further 

trial with juvenile turbot, halibut and sea bream, the level of dietary HUFA was increased 

by using higher levels of dietary oil and by using an oil with a much higher n-3HUFA 

content (Mourente et al. 2002; Tocher et al. 2003). In order to increase the potential 

peroxidative stress to an even higher level, oxidised oil was also used with peroxidation 

induced by controlled heating (50 oC) in an oxygen-rich atmosphere, with the extent of 

peroxidation monitored regularly by sampling and determination of peroxide value (PV). 

Therefore, the dietary trial had a factorial two design (oxidised (X) v. unoxidised oil and 

± tocopherol) giving four diets, HO, HE, HXO and HXE. The effects of dietary oxidised 

oil with or without supplementary dietary tocopherol on the activities of the liver 

antioxidant defence enzymes were characterised. Finally, the levels of liver and whole 

body lipid peroxidation products, including malondialdehyde, determined as TBARS, and 

isoprostanes, were measured. 

         Dietary oxidised oil significantly reduced growth in turbot and especially in halibut, 



 12 

but not in sea bream. Tocopherol improved growth in sea bream fed oxidised oil but not 

in turbot or halibut, although it improved survival in all three species. In sea bream and 

turbot, liver catalase and SOD activities were increased by feeding oxidised oil and 

reduced by dietary tocopherol (Figs. 2 and 3).  Conversely, in halibut, the liver enzyme 

activities were not increased by feeding oxidised oil, but SOD was reduced by feeding 

tocopherol (Figs. 2 and 3). Consistent with these data, feeding oxidised oil increased lipid 

peroxidation products in halibut, but generally not in turbot (Fig. 4). Furthermore, lipid 

peroxidation products were generally reduced by dietary tocopherol in turbot, but not in 

halibut (Fig. 4). Similar attenuating effects of dietary tocopherol in fish fed oxidised oil 

were obtained in previous studies in which sea bream (Obach et al. 1993) and African 

catfish were fed oxidised oil (Baker and Davies 1997a,b).   

        Therefore, halibut liver antioxidant defence enzymes did not respond to dietary 

oxidised oil or tocopherol as occurred in turbot and sea bream. This resulted in increased 

levels of lipid peroxides in halibut compared to turbot in fish given dietary oxidised oil. 

In addition, supplemental tocopherol did not reduce lipid peroxides in halibut as it did in 

turbot and sea bream. Therefore, the increased peroxidation stress in halibut may have 

been responsible for their poorer growth and survival in comparison to turbot and sea 

bream.  It was speculated that this effect in halibut may, in part, be due to the temperature 

of culture (14 oC) compared to turbot and sea bream that were cultured at higher 

temperatures (19 oC). Previous studies have indicated that development of lipid 

peroxidation pathologies is increased at lower water temperatures (Cowey et al. 1984). 

These data from juvenile marine fish provide some of the best evidence that dietary 

tocopherol interacts with endogenous antioxidants including liver enzymes in an 

integrated antioxidant defence system in fish. 

     In a recent study, the physiological response of rainbow trout to oxidative stress 

induced by feeding large amounts of unsaturated fatty acids depended on vitamin E levels 

in the diet and up-regulation of antioxidant enzyme activities corresponded to 

mechanisms combating the elevation of free radicals under oxidative stress (Puangkaew 

et al. 2005). It seems evident, that the role of vitamin E as an effective antioxidant 

depends on the extent of the oxidative stress of the fish. 
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Tocopherol and fatty acid desaturation and elongation pathway 

 

Various effects on tissue fatty acid compositions have been reported in response to diets 

deficient in tocopherol.  Very often no major effects have been observed, but in other 

trials both decreased and increased levels of PUFA have been observed.  Decreased 

levels of PUFA have been easily and logically explained by increased levels of lipid 

peroxidation leading to loss of membrane PUFA and consequently reduced levels of 

tissue PUFA.   However, in rats deficient in both tocopherol and selenium, Buttriss and 

Diplock (1988) observed an increase in the HUFA, 22:6n-3 and 20:4n-6 in mitochondrial 

and microsomal membranes. They theorised that this increase was due to an over 

production of these HUFA arising from increased activity of the desaturation and 

elongation mechanisms responsible for the synthesis of HUFA. A similar effect has also 

been found in African catfish fed oxidised oil (Baker and Davies 1996b). In a more recent 

study, the ability of isolated salmon hepatocytes to desaturate and elongate [1-14C]18:3n-

3 and [1-14C]20:5n-3 was studied in fish fed diets deficient in tocopherol, astaxanthin or 

both (Bell et al. 2000).  The results showed that fatty acid desaturation and elongation 

was increased in fish fed diets deficient in either tocopherol or astaxanthin and, 

especially, in the fish deficient in both (Table 1). There are very few similar studies in 

which fatty acid desaturation and elongation have been determined and related to dietary 

tocopherol.  Despret et al. (1992) investigated the relationship between tocopherol levels 

and fatty acid desaturase activities in rat and found it to be tissue dependent.  Thus, in rat, 

increased vitamin E was associated with increased fatty acyl Δ6 desaturase activity in 

brain, but a similar increased level of tocopherol was associated with decreased Δ6 

desaturase activity in liver. The mechanism of the above effects of dietary tocopherol on 

fatty acid desaturation is unclear.  In an early meta-analysis study, Infante (1986) 

reassessed a range of early data and hypothesised that vitamin E (tocopherol) and 

selenium may have direct roles in fatty acid desaturation.  Specifically, he suggested that 

tocopherol (and selenium) might affect fatty acid desaturation by actually participating in 

the microsomal electron transport chain via the involvement of a terminal vitamin E-

containing electron donor (Infante 1986).  However, no data from subsequent studies 

have supported this hypothesis and few researchers in the field would see a direct role for 
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tocopherol in this way.   It appears likely, therefore, that the effect of tocopherol on fatty 

acid desaturation and elongation occurs through a more indirect mechanism.  It may be 

mediated by a membrane effect, either through affecting membrane fatty acid 

composition or, more indirectly, by affecting fluidity, as there is evidence that tocopherol 

decreases membrane fluidity and/or acts as membrane stabiliser (Wang and Quinn 1999).  

Alternatively, and possibly most plausibly, it is possible that tocopherol may affect the 

desaturation reaction even more indirectly through affecting general cellular peroxide 

tone/antioxidant status.  This is supported by the fact that an increase in peroxide tone, 

whether achieved by restricted dietary intake of one or more antioxidants and/or by 

inclusion of dietary pro-oxidants in the form of oxidised triacylglycerol oils or other lipid 

classes, appears to result in activation of fatty acyl desaturation and elongation. 

 
Conclusions 

 

Dietary tocopherols can affect fatty acid metabolism in at least two ways. They are the 

primary lipid soluble antioxidants and can prevent PUFA peroxidation both by acting as 

quenchers of singlet oxygen and by stabilising fatty acid free radicals and terminating the 

lipid peroxidation chain reaction. The role of tocopherol as an effective antioxidant 

depends on the extent of the oxidative stress in the fish, and is thus related to the quantity 

and quality, in terms of degrees of unsaturation and peroxidation, of dietary fatty acids. 

The role of dietary tocopherol as a lipid antioxidant is well researched and established. 

Less well understood is the role of tocopherol in fatty acid desaturation and elongation. 

Meta-analysis of early studies in mammals suggested that dietary tocopherol levels could 

affect fatty acid desaturation, and led to the hypothesis that tocopherol may have a direct 

role participating in microsomal electron transport. This has not been supported by 

subsequent studies and, in fish, the most common observation has been increased 

membrane PUFA in vitamin E deficiency. Consistent with this, we have measured 

increased desaturation of 18:3n-3 and 20:5n-3 in hepatocytes from salmon fed diets 

deficient in tocopherol. Although the mechanism of the effects of dietary tocopherol on 

fatty acid desaturation and elongation is unclear, it appears likely that tocopherol has its 
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effect through an indirect mechanism possibly involving alteration of cellular oxidation 

potential or “peroxide tone” that also affects cellular synthesis of long-chain PUFA. 
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Legends to Figures 

 

Fig.1. Mechanisms of lipid peroxidation and antioxidant protection. Adapted from 

Sargent et al. (2002). 

 

Fig.2. Effects of dietary tocopherol and oxidised oil on liver catalase activity in turbot, 

sea bream and halibut. Diets were fed to juvenile fish for 3 months.  HO, unoxidised 

oil (PV = 5) without tocopherol; HE, unoxidised oil plus tocopherol (200 ppm); 

HXO, oxidised oil (PV = 45) without tocopherol; HXE, oxidised oil plus tocopherol.  

Activities are presented relative to diet HO (= 1) and are means ± SD (n = 3). 

Significant effects due to tocopherol (toc) and dietary oil (oil) supplementation, and 

interaction (int) as determined by two-way ANOVA are indicated below.  Sea bream 

(toc, oil), turbot (toc) and halibut (none). Data taken from Tocher et al. (2003). 

 

Fig.3. Effects of dietary tocopherol and oxidised oil on liver superoxide dismutase 

activity in turbot, sea bream and halibut. Diets were fed to juvenile fish for 3 months.  

HO, unoxidised oil (PV = 5) without tocopherol; HE, unoxidised oil plus tocopherol 

(200 ppm); HXO, oxidised oil (PV = 45) without tocopherol; HXE, oxidised oil plus 

tocopherol.  Activities are presented relative to diet HO (= 1) and are means ± SD (n 

= 3). Significant effects due to tocopherol (toc) and dietary oil (oil) supplementation, 

and interaction (int) as determined by two-way ANOVA are indicated below.  Sea 

bream (toc, oil, int), turbot (toc) and halibut (toc, oil, int). Data taken from Tocher et 

al. (2003). 

 

Fig.4. Effects of dietary tocopherol and oxidised oil on thiobarbituric acid-reactive 

substances (TBARs) in turbot and halibut. Diets were fed to juvenile fish for 3 

months.  HO, unoxidised oil (PV = 5) without tocopherol; HE, unoxidised oil plus 

tocopherol (200 ppm); HXO, oxidised oil (PV = 45) without tocopherol; HXE, 

oxidised oil plus tocopherol.  Activities are presented relative to diet HO (= 1) and 

are means ± SD (n = 3). Significant effects due to tocopherol (toc) and dietary oil 

(oil) supplementation, and interaction (int) as determined by two-way ANOVA are 
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indicated below.  Turbot (toc) and halibut (oil, int). Data taken from Tocher et al. 

(2003). 

 

Fig.5. Effects of dietary tocopherol and oxidised oil on isoprostanes in turbot and halibut. 

Diets were fed to juvenile fish for 3 months.  HO, unoxidised oil (PV = 5) without 

tocopherol; HE, unoxidised oil plus tocopherol (200 ppm); HXO, oxidised oil (PV = 

45) without tocopherol; HXE, oxidised oil plus tocopherol.  Activities are presented 

relative to diet HO (= 1) and are means ± SD (n = 3). Significant effects due to 

tocopherol (toc) and dietary oil (oil) supplementation, and interaction (int) as 

determined by two-way ANOVA are indicated below. Turbot (toc) and halibut (oil, 

int). Data taken from Tocher et al. (2003). 
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TABLE 1.  Effect of diets deficient in either tocopherol (E) or  

astaxanthin (Ax) on the desaturation of  [1-14C]18:3n-3 and  

[1-14C]20:5n-3 by hepatocytes from Atlantic salmon  

(pmol/h/mg protein; means ± SD, n = 3). Values within a row with  

different superscript letters are significantly different (P < 0.05) 

as determined by one-way ANOVA followed, where appropriate, 

by Tukeys multiple comparison test.  

(Bell, McEvoy and Tocher, unpublished data) 

______________________________________________________ 

                                                                  Diet                                   . 

                           + E+Ax       - E+Ax       + E-Ax       - E-Ax       
_________________________________________________________________ 

[1-14C]18:3n-3 

Total products    10.0 ± 1.7b   16.7 ± 1.6ab   17.6 ± 2.8ab   24.2 ± 4.9a 

Tetraenes              7.7 ± 1.2b   12.2 ± 1.0b   11.9 ± 1.1b    17.2 ± 3.0a 

Pentaenes              1.9 ± 0.6b     3.5 ± 0.5ab    4.0 ± 0.9ab     5.4 ± 1.4a  

22:6n-3                  0.4 ± 0.1      1.0 ± 0.5       1.7 ± 1.2       1.5 ± 0.4 

[1-14C]20:5n-3 

22:6n-3                  7.0 ± 0.8c     7.7 ± 1.4bc  12.7 ± 2.3ab   14.8 ± 3.3a 

_______________________________________________________ 
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Fig. 1. Mechanisms of lipid peroxidation and antioxidant protection 

 

Dietary PUFA                                  Oxygen 

                                                                  Mitochondrial/microsomal electron transport 

                                                                  Cellular oxidases 

Membrane PUFA                                                  Superoxide dismutase 

                                    Free radicals     O2
.-                                                                                    H2O2 

                                                              .OH, HO2
.,                                                         Catalase 

            chain reaction 

        X                                    Tocopherols, ascorbate, carotenoids                 H2O + O2 

Fatty acid hydroperoxides       

     (ROOH)                                                                         Glutathione reductase 

 

Generation of secondary                                     2GSH    Glutathione peroxidase      GSSG 

products, including aldehydes, 

ketones and alcohols (possible                                                                                 

cytotoxic agents).                                                                                                           ROH 
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Fig.2
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Fig.3.
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Fig.4
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Fig.5.
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