292 research outputs found

    How to infer gene networks from expression profiles

    Get PDF
    Inferring, or ‘reverse-engineering', gene networks can be defined as the process of identifying gene interactions from experimental data through computational analysis. Gene expression data from microarrays are typically used for this purpose. Here we compared different reverse-engineering algorithms for which ready-to-use software was available and that had been tested on experimental data sets. We show that reverse-engineering algorithms are indeed able to correctly infer regulatory interactions among genes, at least when one performs perturbation experiments complying with the algorithm requirements. These algorithms are superior to classic clustering algorithms for the purpose of finding regulatory interactions among genes, and, although further improvements are needed, have reached a discreet performance for being practically useful

    Reverse Engineering Gene Networks with ANN: Variability in Network Inference Algorithms

    Get PDF
    Motivation :Reconstructing the topology of a gene regulatory network is one of the key tasks in systems biology. Despite of the wide variety of proposed methods, very little work has been dedicated to the assessment of their stability properties. Here we present a methodical comparison of the performance of a novel method (RegnANN) for gene network inference based on multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER), focussing our analysis on the prediction variability induced by both the network intrinsic structure and the available data. Results: The extensive evaluation on both synthetic data and a selection of gene modules of "Escherichia coli" indicates that all the algorithms suffer of instability and variability issues with regards to the reconstruction of the topology of the network. This instability makes objectively very hard the task of establishing which method performs best. Nevertheless, RegnANN shows MCC scores that compare very favorably with all the other inference methods tested. Availability: The software for the RegnANN inference algorithm is distributed under GPL3 and it is available at the corresponding author home page (http://mpba.fbk.eu/grimaldi/regnann-supmat

    The Risk of Amenorrhea Is Related to Chemotherapy-Induced Leucopenia in Breast Cancer Patients Receiving Epirubicin and Taxane Based Chemotherapy

    Get PDF
    BACKGROUND: Chemotherapy-induced amenorrhea (CIA) is common in young breast cancer patients. The incidence of CIA associated with regimens involving epirubicin and taxane was not well known. Furthermore, previous studies suggested leucopenia and amenorrhea may reflect inter-individual variations in pharmacokinetics. The purpose of this study was to investigate the association between leucopenia after first cycle of chemotherapy and CIA in young breast cancer patients receiving epirubicin and taxane based chemotherapy. Furthermore, the incidence of CIA was also assessed. METHODOLOGY AND PRINCIPAL FINDINGS: Between October 2008 and March 2010, 186 consecutive premenopausal patients, treated with epirubicin and taxane based chemotherapy, were recruited. Information about CIA was collected by telephone and out-patient clinic. Of these 186 patients, data from 165 patients were included and analyzed. Of all 165 patients, CIA occurred in 72 patients (43.64%). In multivariate analysis, age older than 40 y (OR: 16.10, 95% CI: 6.34-40.88, P<0.001) and previous childbearing (OR: 3.17, 95% CI: 1.06-9.47, P = 0.038) were significantly associated with probability of CIA. Compared to patients treated without taxane, patients treated with taxane-contained regimens did not have a significantly higher rate of CIA (P>0.05). The rate of CIA in leucopenia group (52.56%) was significantly higher than that in normal leukocyte group (34.62%) (P = 0.024). In patients treated with a FEC regimen (cyclophosphamide, epirubicin and 5-fluorouracil), the rate of CIA in leucopenia group (59.57%) was significantly higher than that in normal leukocyte group (36.84%) (P = 0.037). CONCLUSIONS: Age at diagnosis and previous childbearing were both found to significantly increase the risk of CIA, whereas additional taxane was not associated with increased rate of CIA. Importantly, leucopenia after first cycle of chemotherapy was associated with increased risk of CIA, which suggested that leucopenia may be an early predictor of chemotherapy-induced infertility

    Inferring gene regulatory networks from gene expression data by path consistency algorithm based on conditional mutual information

    Get PDF
    Motivation: Reconstruction of gene regulatory networks (GRNs), which explicitly represent the causality of developmental or regulatory process, is of utmost interest and has become a challenging computational problem for understanding the complex regulatory mechanisms in cellular systems. However, all existing methods of inferring GRNs from gene expression profiles have their strengths and weaknesses. In particular, many properties of GRNs, such as topology sparseness and non-linear dependence, are generally in regulation mechanism but seldom are taken into account simultaneously in one computational method.Results: In this work, we present a novel method for inferring GRNs from gene expression data considering the non-linear dependence and topological structure of GRNs by employing path consistency algorithm (PCA) based on conditional mutual information (CMI). In this algorithm, the conditional dependence between a pair of genes is represented by the CMI between them. With the general hypothesis of Gaussian distribution underlying gene expression data, CMI between a pair of genes is computed by a concise formula involving the covariance matrices of the related gene expression profiles. The method is validated on the benchmark GRNs from the DREAM challenge and the widely used SOS DNA repair network in Escherichia coli. The cross-validation results confirmed the effectiveness of our method (PCA-CMI), which outperforms significantly other previous methods. Besides its high accuracy, our method is able to distinguish direct (or causal) interactions from indirect associations

    Large-Scale Mapping and Validation of Escherichia coli Transcriptional Regulation from a Compendium of Expression Profiles

    Get PDF
    Machine learning approaches offer the potential to systematically identify transcriptional regulatory interactions from a compendium of microarray expression profiles. However, experimental validation of the performance of these methods at the genome scale has remained elusive. Here we assess the global performance of four existing classes of inference algorithms using 445 Escherichia coli Affymetrix arrays and 3,216 known E. coli regulatory interactions from RegulonDB. We also developed and applied the context likelihood of relatedness (CLR) algorithm, a novel extension of the relevance networks class of algorithms. CLR demonstrates an average precision gain of 36% relative to the next-best performing algorithm. At a 60% true positive rate, CLR identifies 1,079 regulatory interactions, of which 338 were in the previously known network and 741 were novel predictions. We tested the predicted interactions for three transcription factors with chromatin immunoprecipitation, confirming 21 novel interactions and verifying our RegulonDB-based performance estimates. CLR also identified a regulatory link providing central metabolic control of iron transport, which we confirmed with real-time quantitative PCR. The compendium of expression data compiled in this study, coupled with RegulonDB, provides a valuable model system for further improvement of network inference algorithms using experimental data

    DREAM4: Combining Genetic and Dynamic Information to Identify Biological Networks and Dynamical Models

    Get PDF
    Current technologies have lead to the availability of multiple genomic data types in sufficient quantity and quality to serve as a basis for automatic global network inference. Accordingly, there are currently a large variety of network inference methods that learn regulatory networks to varying degrees of detail. These methods have different strengths and weaknesses and thus can be complementary. However, combining different methods in a mutually reinforcing manner remains a challenge.We investigate how three scalable methods can be combined into a useful network inference pipeline. The first is a novel t-test-based method that relies on a comprehensive steady-state knock-out dataset to rank regulatory interactions. The remaining two are previously published mutual information and ordinary differential equation based methods (tlCLR and Inferelator 1.0, respectively) that use both time-series and steady-state data to rank regulatory interactions; the latter has the added advantage of also inferring dynamic models of gene regulation which can be used to predict the system's response to new perturbations.Our t-test based method proved powerful at ranking regulatory interactions, tying for first out of methods in the DREAM4 100-gene in-silico network inference challenge. We demonstrate complementarity between this method and the two methods that take advantage of time-series data by combining the three into a pipeline whose ability to rank regulatory interactions is markedly improved compared to either method alone. Moreover, the pipeline is able to accurately predict the response of the system to new conditions (in this case new double knock-out genetic perturbations). Our evaluation of the performance of multiple methods for network inference suggests avenues for future methods development and provides simple considerations for genomic experimental design. Our code is publicly available at http://err.bio.nyu.edu/inferelator/

    Inferring the role of transcription factors in regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression profiles obtained from multiple perturbation experiments are increasingly used to reconstruct transcriptional regulatory networks, from well studied, simple organisms up to higher eukaryotes. Admittedly, a key ingredient in developing a reconstruction method is its ability to integrate heterogeneous sources of information, as well as to comply with practical observability issues: measurements can be scarce or noisy. In this work, we show how to combine a network of genetic regulations with a set of expression profiles, in order to infer the functional effect of the regulations, as inducer or repressor. Our approach is based on a consistency rule between a network and the signs of variation given by expression arrays.</p> <p>Results</p> <p>We evaluate our approach in several settings of increasing complexity. First, we generate artificial expression data on a transcriptional network of <it>E. coli </it>extracted from the literature (1529 nodes and 3802 edges), and we estimate that 30% of the regulations can be annotated with about 30 profiles. We additionally prove that at most 40.8% of the network can be inferred using our approach. Second, we use this network in order to validate the predictions obtained with a compendium of real expression profiles. We describe a filtering algorithm that generates particularly reliable predictions. Finally, we apply our inference approach to <it>S. cerevisiae </it>transcriptional network (2419 nodes and 4344 interactions), by combining ChIP-chip data and 15 expression profiles. We are able to detect and isolate inconsistencies between the expression profiles and a significant portion of the model (15% of all the interactions). In addition, we report predictions for 14.5% of all interactions.</p> <p>Conclusion</p> <p>Our approach does not require accurate expression levels nor times series. Nevertheless, we show on both data, real and artificial, that a relatively small number of perturbation experiments are enough to determine a significant portion of regulatory effects. This is a key practical asset compared to statistical methods for network reconstruction. We demonstrate that our approach is able to provide accurate predictions, even when the network is incomplete and the data is noisy.</p

    Network deconvolution as a general method to distinguish direct dependencies in networks

    Get PDF
    Recognizing direct relationships between variables connected in a network is a pervasive problem in biological, social and information sciences as correlation-based networks contain numerous indirect relationships. Here we present a general method for inferring direct effects from an observed correlation matrix containing both direct and indirect effects. We formulate the problem as the inverse of network convolution, and introduce an algorithm that removes the combined effect of all indirect paths of arbitrary length in a closed-form solution by exploiting eigen-decomposition and infinite-series sums. We demonstrate the effectiveness of our approach in several network applications: distinguishing direct targets in gene expression regulatory networks; recognizing directly interacting amino-acid residues for protein structure prediction from sequence alignments; and distinguishing strong collaborations in co-authorship social networks using connectivity information alone. In addition to its theoretical impact as a foundational graph theoretic tool, our results suggest network deconvolution is widely applicable for computing direct dependencies in network science across diverse disciplines.National Institutes of Health (U.S.) (grant R01 HG004037)National Institutes of Health (U.S.) (grant HG005639)Swiss National Science Foundation (Fellowship)National Science Foundation (U.S.) (NSF CAREER Award 0644282

    Genome-wide patterns of promoter sharing and co-expression in bovine skeletal muscle

    Get PDF
    Background: Gene regulation by transcription factors (TF) is species, tissue and time specific. To better understand how the genetic code controls gene expression in bovine muscle we associated gene expression data from developing Longissimus thoracis et lumborum skeletal muscle with bovine promoter sequence information.Results: We created a highly conserved genome-wide promoter landscape comprising 87,408 interactions relating 333 TFs with their 9,242 predicted target genes (TGs). We discovered that the complete set of predicted TGs share an average of 2.75 predicted TF binding sites (TFBSs) and that the average co-expression between a TF and its predicted TGs is higher than the average co-expression between the same TF and all genes. Conversely, pairs of TFs sharing predicted TGs showed a co-expression correlation higher that pairs of TFs not sharing TGs. Finally, we exploited the co-occurrence of predicted TFBS in the context of muscle-derived functionally-coherent modules including cell cycle, mitochondria, immune system, fat metabolism, muscle/glycolysis, and ribosome. Our findings enabled us to reverse engineer a regulatory network of core processes, and correctly identified the involvement of E2F1, GATA2 and NFKB1 in the regulation of cell cycle, fat, and muscle/glycolysis, respectively.Conclusion: The pivotal implication of our research is two-fold: (1) there exists a robust genome-wide expression signal between TFs and their predicted TGs in cattle muscle consistent with the extent of promoter sharing; and (2) this signal can be exploited to recover the cellular mechanisms underpinning transcription regulation of muscle structure and development in bovine. Our study represents the first genome-wide report linking tissue specific co-expression to co-regulation in a non-model vertebrate
    corecore