Motivation :Reconstructing the topology of a gene regulatory network is one
of the key tasks in systems biology. Despite of the wide variety of proposed
methods, very little work has been dedicated to the assessment of their
stability properties. Here we present a methodical comparison of the
performance of a novel method (RegnANN) for gene network inference based on
multilayer perceptrons with three reference algorithms (ARACNE, CLR, KELLER),
focussing our analysis on the prediction variability induced by both the
network intrinsic structure and the available data.
Results: The extensive evaluation on both synthetic data and a selection of
gene modules of "Escherichia coli" indicates that all the algorithms suffer of
instability and variability issues with regards to the reconstruction of the
topology of the network. This instability makes objectively very hard the task
of establishing which method performs best. Nevertheless, RegnANN shows MCC
scores that compare very favorably with all the other inference methods tested.
Availability: The software for the RegnANN inference algorithm is distributed
under GPL3 and it is available at the corresponding author home page
(http://mpba.fbk.eu/grimaldi/regnann-supmat