445 research outputs found
O(d,d)-invariance in inhomogeneous string cosmologies with perfect fluid
In the first part of the present paper, we show that O(d,d)-invariance
usually known in a homogeneous cosmological background written in terms of
proper time can be extended to backgrounds depending on one or several
coordinates (which may be any space-like or time-like coordinate(s)). In all
cases, the presence of a perfect fluid is taken into account and the equivalent
duality transformation in Einstein frame is explicitly given. In the second
part, we present several concrete applications to some four-dimensional
metrics, including inhomogeneous ones, which illustrate the different duality
transformations discussed in the first part. Note that most of the dual
solutions given here do not seem to be known in the literature.Comment: 25 pages, no figures, Latex. Accepted for publication in General
Relativity and Gravitatio
Cosmology with exponential potentials
We examine in the context of general relativity the dynamics of a spatially
flat Robertson-Walker universe filled with a classical minimally coupled scalar
field \phi of exponential potential ~ e^{-\mu\phi} plus pressureless baryonic
matter. This system is reduced to a first-order ordinary differential equation,
providing direct evidence on the acceleration/deceleration properties of the
system. As a consequence, for positive potentials, passage into acceleration
not at late times is generically a feature of the system, even when the
late-times attractors are decelerating. Furthermore, the structure formation
bound, together with the constraints on the present values of \Omega_{m},
w_{\phi} provide, independently of initial conditions and other parameters,
necessary conditions on \mu. Special solutions are found to possess intervals
of acceleration. For the almost cosmological constant case w_{\phi} ~ -1, as
well as, for the generic late-times evolution, the general relation
\Omega_{\phi}(w_{\phi}) is obtained.Comment: RevTex4, 9 pages, 2 figures, References adde
Bianchi Type I Cosmologies in Arbitrary Dimensional Dilaton Gravities
We study the low energy string effective action with an exponential type
dilaton potential and vanishing torsion in a Bianchi type I space-time
geometry. In the Einstein and string frames the general solution of the
gravitational field equations can be expressed in an exact parametric form.
Depending on the values of some parameters the obtained cosmological models can
be generically divided into three classes, leading to both singular and
nonsingular behaviors. The effect of the potential on the time evolution of the
mean anisotropy parameter is also considered in detail, and it is shown that a
Bianchi type I Universe isotropizes only in the presence of a dilaton field
potential or a central deficit charge.Comment: REVTEX, 10 pages, 8 figure
Cosmology from Rolling Massive Scalar Field on the anti-D3 Brane of de Sitter Vacua
We investigate a string-inspired scenario associated with a rolling massive
scalar field on D-branes and discuss its cosmological implications. In
particular, we discuss cosmological evolution of the massive scalar field on
the ant-D3 brane of KKLT vacua. Unlike the case of tachyon field, because of
the warp factor of the anti-D3 brane, it is possible to obtain the required
level of amplitude of density perturbations. We study the spectra of scalar and
tensor perturbations generated during the rolling scalar inflation and show
that our scenario satisfies the observational constraint coming from the Cosmic
Microwave Background anisotropies and other observational data. We also
implement the negative cosmological constant arising from the stabilization of
the modulus fields in the KKLT vacua and find that this leads to a successful
reheating in which the energy density of the scalar field effectively scales as
a pressureless dust. The present dark energy can be also explained in our
scenario provided that the potential energy of the massive rolling scalar does
not exactly cancel with the amplitude of the negative cosmological constant at
the potential minimum.Comment: RevTex4, 15 pages, 5 eps figures, minor clarifications and few
references added, final version to appear in PR
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy
Ground-based gamma-ray astronomy has had a major breakthrough with the impressive results obtained using systems of imaging atmospheric Cherenkov telescopes. Ground-based gamma-ray astronomy has a huge potential in astrophysics, particle physics and cosmology. CTA is an international initiative to build the next generation instrument, with a factor of 5-10 improvement in sensitivity in the 100 GeV-10 TeV range and the extension to energies well below 100 GeV and above 100 TeV. CTA will consist of two arrays (one in the north, one in the south) for full sky coverage and will be operated as open observatory. The design of CTA is based on currently available technology. This document reports on the status and presents the major design concepts of CTA
Quality control of B-lines analysis in stress Echo 2020
Background
The effectiveness trial “Stress echo (SE) 2020” evaluates novel applications of SE in and beyond coronary artery disease. The core protocol also includes 4-site simplified scan of B-lines by lung ultrasound, useful to assess pulmonary congestion.
Purpose
To provide web-based upstream quality control and harmonization of B-lines reading criteria.
Methods
60 readers (all previously accredited for regional wall motion, 53 B-lines naive) from 52 centers of 16 countries of SE 2020 network read a set of 20 lung ultrasound video-clips selected by the Pisa lab serving as reference standard, after taking an obligatory web-based learning 2-h module (
http://se2020.altervista.org
). Each test clip was scored for B-lines from 0 (black lung, A-lines, no B-lines) to 10 (white lung, coalescing B-lines). The diagnostic gold standard was the concordant assessment of two experienced readers of the Pisa lab. The answer of the reader was considered correct if concordant with reference standard reading ±1 (for instance, reference standard reading of 5 B-lines; correct answer 4, 5, or 6). The a priori determined pass threshold was 18/20 (≥ 90%) with R value (intra-class correlation coefficient) between reference standard and recruiting center) > 0.90. Inter-observer agreement was assessed with intra-class correlation coefficient statistics.
Results
All 60 readers were successfully accredited: 26 (43%) on first, 24 (40%) on second, and 10 (17%) on third attempt. The average diagnostic accuracy of the 60 accredited readers was 95%, with R value of 0.95 compared to reference standard reading. The 53 B-lines naive scored similarly to the 7 B-lines expert on first attempt (90 versus 95%, p = NS). Compared to the step-1 of quality control for regional wall motion abnormalities, the mean reading time per attempt was shorter (17 ± 3 vs 29 ± 12 min, p < .01), the first attempt success rate was higher (43 vs 28%, p < 0.01), and the drop-out of readers smaller (0 vs 28%, p < .01).
Conclusions
Web-based learning is highly effective for teaching and harmonizing B-lines reading. Echocardiographers without previous experience with B-lines learn quickly.info:eu-repo/semantics/publishedVersio
Recommended from our members
An examination of factors influencing the choice of therapy for patients with coronary artery disease
BACKGROUND: A diverse range of factors influence clinicians' decisions regarding the allocation of patients to different treatments for coronary artery disease in routine cardiology clinics. These include demographic measures, risk factors, co-morbidities, measures of objective cardiac disease, symptom reports and functional limitations. This study examined which of these factors differentiated patients receiving angioplasty from medication; bypass surgery from medication; and bypass surgery from angioplasty. METHODS: Univariate and multivariate logistic regression analyses were conducted on patient data from 214 coronary artery disease patients who at the time of recruitment had been received a clinical assessment and were reviewed by their cardiologist in order to determine the form of treatment they were to undergo: 70 would receive/continue medication, 71 were to undergo angioplasty and 73 were to undergo bypass surgery. RESULTS: Analyses differentiating patients receiving angioplasty from medication produced 9 significant univariate predictors, of which 5 were also multivariately significant (left anterior descending artery disease, previous coronary interventions, age, hypertension and frequency of angina). The analyses differentiating patients receiving surgery from angioplasty produced 12 significant univariate predictors, of which 4 were multivariately significant (limitations in mobility range, circumflex artery disease, previous coronary interventions and educational level). The analyses differentiating patients receiving surgery from medication produced 14 significant univariate predictors, of which 4 were multivariately significant (left anterior descending artery disease, previous cerebral events, limitations in mobility range and circumflex artery disease). CONCLUSION: Variables emphasised in clinical guidelines are clearly involved in coronary artery disease treatment decisions. However, variables beyond these may also be important factors when therapy decisions are undertaken thus their roles require further investigation
Outcome based subgroup analysis: a neglected concern
A subgroup of clinical trial subjects identified by baseline characteristics is a proper subgroup while a subgroup determined by post randomization events or measures is an improper subgroup. Both types of subgroups are often analyzed in clinical trial papers. Yet, the extensive scrutiny of subgroup analyses has almost exclusively attended to the former. The analysis of improper subgroups thereby not only flourishes in numerous disguised ways but also does so without a corresponding awareness of its pitfalls. Comparisons of the grade of angina in a heart disease trial, for example, usually include only the survivors. This paper highlights some of the distinct ways in which outcome based subgroup analysis occurs, describes the hazards associated with it, and proposes a simple alternative approach to counter its analytic bias. Data from six published trials show that outcome based subgroup analysis, like proper subgroup analysis, may be performed in a post-hoc fashion, overdone, selectively reported, and over interpreted. Six hypothetical trial scenarios illustrate the forms of hidden bias related to it. That bias can, however, be addressed by assigning clinically appropriate scores to the usually excluded subjects and performing an analysis that includes all the randomized subjects. A greater level of awareness about the practice and pitfalls of outcome based subgroup analysis is needed. When required, such an analysis should maintain the integrity of randomization. This issue needs greater practical and methodologic attention than has been accorded to it thus far
- …
