393 research outputs found

    Individualised perioperative blood pressure and fluid therapy in oesophagectomy:study protocol for a randomised clinical trial

    Get PDF
    INTRODUCTION: Oesophagectomy is the mainstay of curative treatment for oesophageal cancer, but it is associated with a high risk of major complications. Goal-directed fluid therapy and individualised blood pressure management may prevent complications after surgery. Extending goal-directed fluid therapy after surgery and applying an individual blood pressure target may have substantial benefit in oesophagectomy. This is a protocol for a clinical trial implementing a novel haemodynamic protocol from the start of anaesthesia to the next day with the patient’s own night-time blood pressure as the lower threshold.METHODS: This is a single-centre, single-blind, randomised, clinical trial. Oesophagectomy patients are randomised 1:1 for either perioperative haemodynamic management according to a goal-directed fluid therapy protocol with an individual target blood pressure or for standard care. The primary endpoint is the total burden of morbidity and mortality assessed by the Comprehensive Complication Index 30 days after surgery. Secondary endpoints are complications, reoperations, fluid and vasopressor dosage and quality of life at 90 days after surgery.CONCLUSIONS: The results from this trial provide an objective and easy-to-follow algorithm for fluid administration, which may improve patient-centred outcomes in oesophagectomy patients.</p

    Membrane Instantons and de Sitter Vacua

    Full text link
    We investigate membrane instanton effects in type IIA strings compactified on rigid Calabi-Yau manifolds. These effects contribute to the low-energy effective action of the universal hypermultiplet. In the absence of additional fivebrane instantons, the quaternionic geometry of this hypermultiplet is determined by solutions of the three-dimensional Toda equation. We construct solutions describing membrane instantons, and find perfect agreement with the string theory prediction. In the context of flux compactifications we discuss how membrane instantons contribute to the scalar potential and the stabilization of moduli. Finally, we demonstrate the existence of meta-stable de Sitter vacua.Comment: v3: minor clarifications, JHEP version, 38 page

    Transductive Learning for Spatial Data Classification

    Full text link
    Learning classifiers of spatial data presents several issues, such as the heterogeneity of spatial objects, the implicit definition of spatial relationships among objects, the spatial autocorrelation and the abundance of unlabelled data which potentially convey a large amount of information. The first three issues are due to the inherent structure of spatial units of analysis, which can be easily accommodated if a (multi-)relational data mining approach is considered. The fourth issue demands for the adoption of a transductive setting, which aims to make predictions for a given set of unlabelled data. Transduction is also motivated by the contiguity of the concept of positive autocorrelation, which typically affect spatial phenomena, with the smoothness assumption which characterize the transductive setting. In this work, we investigate a relational approach to spatial classification in a transductive setting. Computational solutions to the main difficulties met in this approach are presented. In particular, a relational upgrade of the nave Bayes classifier is proposed as discriminative model, an iterative algorithm is designed for the transductive classification of unlabelled data, and a distance measure between relational descriptions of spatial objects is defined in order to determine the k-nearest neighbors of each example in the dataset. Computational solutions have been tested on two real-world spatial datasets. The transformation of spatial data into a multi-relational representation and experimental results are reported and commented

    Measurement of the Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction

    Get PDF
    The Bs0→J/ψKS0B_s^0\to J/\psi K_S^0 branching fraction is measured in a data sample corresponding to 0.41fb−1fb^{-1} of integrated luminosity collected with the LHCb detector at the LHC. This channel is sensitive to the penguin contributions affecting the sin2ÎČ\beta measurement from B0→J/ψKS0B^0\to J/\psi K_S^0 The time-integrated branching fraction is measured to be BF(Bs0→J/ψKS0)=(1.83±0.28)×10−5BF(B_s^0\to J/\psi K_S^0)=(1.83\pm0.28)\times10^{-5}. This is the most precise measurement to date

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
    • 

    corecore