505 research outputs found

    Changes in volume, clinical practice and outcome after reorganisation of oesophago-gastric cancer care in England: A longitudinal observational study.

    Get PDF
    AIM: The centralisation of oesophago-gastric (O-G) cancer services in England was recommended in 2001, partly because of evidence for a volume-outcome effect for patients having surgery. This study investigated the changes in surgical services for O-G cancer and postoperative mortality since centralisation. METHODS: Patients with O-G cancer who had an oesophageal or gastric resection between April 2003 and March 2014 were identified in the national Hospital Episodes Statistics database. We derived information on the number of NHS trusts performing surgery, their surgical volume, and the number of consultants operating. Postoperative mortality was measured at 30 days, 90 days and 1 year. Logistic regression was used to examine how surgical outcomes were related to patient characteristics and organisational variables. RESULTS: During this period, 29 205 patients underwent an oesophagectomy or gastrectomy. The number of NHS trusts performing surgery decreased from 113 in 2003-04 to 43 in 2013-14, and the median annual surgical volume in NHS trusts rose from 21 to 55 patients. The annual 30 day, 90 day and 1 year mortality decreased from 7.4%, 11.3% and 29.7% in 2003-04 to 2.5%, 4.6% and 19.8% in 2013-14, respectively. There was no evidence that high-risk patients were not undergoing surgery. Changes in NHS trust volume explained only a small proportion of the observed fall in mortality. CONCLUSION: Centralisation of surgical services for O-G cancer in England has resulted in lower postoperative mortality. This cannot be explained by increased volume alone

    Analogue peptides for the immunotherapy of human acute myeloid leukemia

    Get PDF
    Accepted manuscript. The final publication is available at: http://link.springer.com/article/10.1007%2Fs00262-015-1762-9The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies

    Aurora B potentiates Mps1 activation to ensure rapid checkpoint establishment at the onset of mitosis

    Get PDF
    The mitotic checkpoint prevents mitotic exit until all chromosomes are attached to spindle microtubules. Aurora B kinase indirectly invokes this checkpoint by destabilizing incorrect attachments; however, a more direct role remains controversial. In contrast, activity of the kinase Mps1 is indispensible for the mitotic checkpoint. Here we show that Aurora B and Hec1 are needed for efficient Mps1 recruitment to unattached kinetochores, allowing rapid Mps1 activation at the onset of mitosis. Live monitoring of cyclin B degradation reveals that this is essential to establish the mitotic checkpoint quickly at the start of mitosis. Delayed Mps1 activation and checkpoint establishment upon Aurora B inhibition or Hec1 depletion are rescued by tethering Mps1 to kinetochores, demonstrating that Mps1 recruitment is the primary role of Aurora B and Hec1 in mitotic checkpoint signalling. These data demonstrate a direct role for Aurora B in initiating the mitotic checkpoint rapidly at the onset of mitosis

    Sec12 Binds to Sec16 at Transitional ER Sites

    Get PDF
    COPII vesicles bud from an ER domain known as the transitional ER (tER). Assembly of the COPII coat is initiated by the transmembrane guanine nucleotide exchange factor Sec12. In the budding yeast Pichia pastoris, Sec12 is concentrated at tER sites. Previously, we found that the tER localization of P. pastoris Sec12 requires a saturable binding partner. We now show that this binding partner is Sec16, a peripheral membrane protein that functions in ER export and tER organization. One line of evidence is that overexpression of Sec12 delocalizes Sec12 to the general ER, but simultaneous overexpression of Sec16 retains overexpressed Sec12 at tER sites. Additionally, when P. pastoris Sec12 is expressed in S. cerevisiae, the exogenous Sec12 localizes to the general ER, but when P. pastoris Sec16 is expressed in the same cells, the exogenous Sec12 is recruited to tER sites. In both of these experimental systems, the ability of Sec16 to recruit Sec12 to tER sites is abolished by deleting a C-terminal fragment of Sec16. Biochemical experiments confirm that this C-terminal fragment of Sec16 binds to the cytosolic domain of Sec12. Similarly, we demonstrate that human Sec12 is concentrated at tER sites, likely due to association with a C-terminal fragment of Sec16A. These results suggest that a Sec12–Sec16 interaction has a conserved role in ER export

    Essential versus accessory aspects of cell death: recommendations of the NCCD 2015

    Get PDF
    Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death

    Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study

    Get PDF
    The emerging industrial business partnerships, which feature cross-functional and cross-company development efforts, raise the barrier for the establishment of effective knowledge sharing practices in the larger organization. This chapter aims to highlight the role of knowledge as a key enabler for effective engineering activities in the light of such emerging enterprise collaboration models. Knowledge Enabled Engineering (KEE) is presented as an approach to enhance the extended organization’s capability to establish effective collaboration among its parts, in spite of different organizational structures, technologies or processes. KEE is analysed in its constituent parts, highlighting areas, methods and tools that are particularly interesting for leveraging companies’ knowledge sharing capabilities

    Residual stress in laser cladded rail

    Get PDF
    To improve the fatigue life of components subject to loads with high surface strain gradients, it is possible to coat them with an alloy of higher durability. The present study focuses on the effect of cladding high value track components, made of a standard rail steel UIC 900A/grade 260, with a layer of a premium martensitic stainless steel to reduce wear and fatigue. The laser cladding process inevitably generates residual stresses in the clad and parent metal, which could be detrimental to the integrity of the component. Therefore, measurements to determine the residual stress state of cladded rail were performed using semi-destructive centre-hole and deep hole drilling and non-destructive neutron diffraction techniques. Subsequently, the effects of cycling loading and wear, representative of typical service loads, on the redistribution of the residual stress field were investigated. It was observed that laser cladding causes a triaxial compressive residual stress field in the clad and near the interface and a tensile stress field in the parent material. The stress field is shown to change when the first cycle of load is applied but reaches a steady state after only 10 cycles: After the 10th cycle there is no evidence that the clad continues accumulating strain which could indicate that there is low risk of ratcheting. Wear effect on residual stress redistribution was found to be local on the surface of the specimen only

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Comprehensive assessment of sequence variation within the copy number variable defensin cluster on 8p23 by target enriched in-depth 454 sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In highly copy number variable (CNV) regions such as the human defensin gene locus, comprehensive assessment of sequence variations is challenging. PCR approaches are practically restricted to tiny fractions, and next-generation sequencing (NGS) approaches of whole individual genomes e.g. by the 1000 Genomes Project is confined by an affordable sequence depth. Combining target enrichment with NGS may represent a feasible approach.</p> <p>Results</p> <p>As a proof of principle, we enriched a ~850 kb section comprising the CNV defensin gene cluster DEFB, the invariable DEFA part and 11 control regions from two genomes by sequence capture and sequenced it by 454 technology. 6,651 differences to the human reference genome were found. Comparison to HapMap genotypes revealed sensitivities and specificities in the range of 94% to 99% for the identification of variations.</p> <p>Using error probabilities for rigorous filtering revealed 2,886 unique single nucleotide variations (SNVs) including 358 putative novel ones. DEFB CN determinations by haplotype ratios were in agreement with alternative methods.</p> <p>Conclusion</p> <p>Although currently labor extensive and having high costs, target enriched NGS provides a powerful tool for the comprehensive assessment of SNVs in highly polymorphic CNV regions of individual genomes. Furthermore, it reveals considerable amounts of putative novel variations and simultaneously allows CN estimation.</p
    corecore