21,836 research outputs found

    Constraints on the distribution of supernova remnants with Galactocentric radius

    Get PDF
    Supernova remnants (SNRs) in the Galaxy are an important source of energy injection into the interstellar medium, and also of cosmic rays. Currently there are 294 known SNRs in the Galaxy, and their distribution with Galactocentric radius is of interest for various studies. Here I discuss some of the statistics of Galactic SNRs, including the observational selection effects that apply, and difficulties in obtaining distances for individual remnants from the `Sigma-D' relation. Comparison of the observed Galactic longitude distribution of a sample of bright Galactic SNRs -- which are not strongly affected by selection effects -- with those expected from models is used to constrain the Galactic distribution of SNRs. The best-fitting power-law/exponential model is more concentrated towards the Galactic centre than the widely used distribution obtained by Case & Bhattacharya (1998).This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stv188

    A methodology for full-system power modeling in heterogeneous data centers

    Get PDF
    The need for energy-awareness in current data centers has encouraged the use of power modeling to estimate their power consumption. However, existing models present noticeable limitations, which make them application-dependent, platform-dependent, inaccurate, or computationally complex. In this paper, we propose a platform-and application-agnostic methodology for full-system power modeling in heterogeneous data centers that overcomes those limitations. It derives a single model per platform, which works with high accuracy for heterogeneous applications with different patterns of resource usage and energy consumption, by systematically selecting a minimum set of resource usage indicators and extracting complex relations among them that capture the impact on energy consumption of all the resources in the system. We demonstrate our methodology by generating power models for heterogeneous platforms with very different power consumption profiles. Our validation experiments with real Cloud applications show that such models provide high accuracy (around 5% of average estimation error).This work is supported by the Spanish Ministry of Economy and Competitiveness under contract TIN2015-65316-P, by the Gener- alitat de Catalunya under contract 2014-SGR-1051, and by the European Commission under FP7-SMARTCITIES-2013 contract 608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS- CETiC) and 610456 (EuroServer).Peer ReviewedPostprint (author's final draft

    Patterns of quark mass matrices in a class of Calabi-Yau models

    Full text link
    We study a class of superstring models compactified in the 3-generation Calabi-Yau manifold of Tian and Yau. Our analysis includes the complete E6E_6-singlet sector, which has been recently evaluated using techniques of spectral and exact sequences. We use the discrete symmetries of the models to find flat directions of symmetry breaking that leave unbroken a low energy matter parity and make all leptoquarks heavy while preserving light Higgs fields. Then we classify the patterns of ordinary quark mass matrices and show that (without invoking effects due to nonrenormalizable terms) only one structure can accommodate the observed value of fermion masses and mixing angles, with preference for a heavy {\it top} quark ( mt170m_t\ge 170 GeV for V130.013V_{13}\le 0.013 ). The model, which unifies perturbatively and predicts a realistic structure of quark mass matrices with texture zeroes, is one of the many possible string vacua. However, in contrast with what is often assumed in the search for realistic unified scenarios, it is highly nonminimal near the unification scale and the predicted mass matrices have no simple symmetry properties.Comment: 30 (including Tables and Figures), UG-FT-38/9

    GMRT detections of low-mass young stars at 323 and 608 MHz

    Get PDF
    We present the results of a pathfinder project conducted with the Giant Metrewave Radio Telescope (GMRT) to investigate protostellar systems at low radio frequencies. The goal of these investigations is to locate the break in the free-free spectrum where the optical depth equals unity in order to constrain physical parameters of these systems, such as the mass of the ionised gas surrounding these young stars. We detect all three target sources, L1551 IRS 5 (Class I), T Tau and DG Tau (Class II), at frequencies 323 and 608 MHz (wavelengths 90 and 50 cm, respectively). These are the first detections of low mass young stellar objects (YSOs) at such low frequencies. We combine these new GMRT data with archival information to construct the spectral energy distributions for each system and find a continuation of the optically thin free-free spectra extrapolated from higher radio frequencies to 323 MHz for each target. We use these results to place limits on the masses of the ionised gas and average electron densities associated with these young systems on scales of ~1000 au. Future observations with higher angular resolution at lower frequencies are required to constrain these physical parameters further.We thank the staff of the GMRT who have made these observations possible. GMRT is run by the National Centre for Radio Astrophysics of the Tata Institute of Fundamental Research. REA, TPR and CPC acknowledge support from Science Foundation Ireland under grant 13/ERC/I2907. AMS gratefully acknowledges support from the European Research Council under grant ERC-2012-StG-307215 LODESTONE. DAG thanks the Science and Technology Facilities Council for support. We thank the anonymous referee for their helpful and constructive comments to clarify this manuscript.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stw70

    Anisotropic elastic theory of preloaded granular media

    Full text link
    A macroscopic elastic description of stresses in static, preloaded granular media is derived systematically from the microscopic elasticity of individual inter-grain contacts. The assumed preloaded state and friction at contacts ensure that the network of inter-grain contacts is not altered by small perturbations. The texture of this network, set by the preparation of the system, is encoded in second and fourth order fabric tensors. A small perturbation generates both normal and tangential inter-grain forces, the latter causing grains to reorient. This reorientation response and the incremental stress are expressed in terms of the macroscopic strain.Comment: 7 pages, 2 figures. Accepted version. [email protected] [email protected]

    Influence of cold-water immersion on limb blood flow after resistance exercise.

    Get PDF
    This study determined the influence of cold (8°C) and cool (22°C) water immersion on lower limb and cutaneous blood flow following resistance exercise. Twelve males completed 4 sets of 10-repetition maximum squat exercise and were then immersed, semi-reclined, into 8°C or 22°C water for 10-min, or rested in a seated position (control) in a randomized order on different days. Rectal and thigh skin temperature, muscle temperature, thigh and calf skin blood flow and superficial femoral artery blood flow were measured before and after immersion. Indices of vascular conductance were calculated (flux and blood flow/mean arterial pressure). The colder water reduced thigh skin temperature and deep muscle temperature to the greatest extent (P < .001). Reductions in rectal temperature were similar (0.2-0.4°C) in all three trials (P = .69). Femoral artery conductance was similar after immersion in both cooling conditions, with both conditions significantly lower (55%) than the control post-immersion (P < .01). Similarly, there was greater thigh and calf cutaneous vasoconstriction (40-50%) after immersion in both cooling conditions, relative to the control (P < .01), with no difference between cooling conditions. These findings suggest that cold and cool water similarly reduce femoral artery and cutaneous blood flow responses but not muscle temperature following resistance exercise

    Finite temperature stability and dimensional crossover of exotic superfluidity in lattices

    Full text link
    We investigate exotic paired states of spin-imbalanced Fermi gases in anisotropic lattices, tuning the dimension between one and three. We calculate the finite temperature phase diagram of the system using real-space dynamical mean-field theory in combination with the quantum Monte Carlo method. We find that regardless of the intermediate dimensions examined, the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state survives to reach about one third of the BCS critical temperature of the spin-density balanced case. We show how the gapless nature of the state found is reflected in the local spectral function. While the FFLO state is found at a wide range of polarizations at low temperatures across the dimensional crossover, with increasing temperature we find out strongly dimensionality-dependent melting characteristics of shell structures related to harmonic confinement. Moreover, we show that intermediate dimension can help to stabilize an extremely uniform finite temperature FFLO state despite the presence of harmonic confinement.Comment: 5 pages, 3 figure

    Higgs for Graviton: Simple and Elegant Solution

    Get PDF
    A Higgs mechanism for gravity is presented, where four scalars with global Lorentz symmetry are employed. We show that in the broken symmetry phase a graviton absorbs all scalars and become massive spin 2 particle with five degrees of freedom. The resulting theory is unitary and free of ghosts.Comment: 8 pages, References added. The decoupling of ghost state is analyzed in detail

    Revisiting Clifford algebras and spinors III: conformal structures and twistors in the paravector model of spacetime

    Full text link
    This paper is the third of a series of three, and it is the continuation of math-ph/0412074 and math-ph/0412075. After reviewing the conformal spacetime structure, conformal maps are described in Minkowski spacetime as the twisted adjoint representation of the group Spin_+(2,4), acting on paravectors. Twistors are then presented via the paravector model of Clifford algebras and related to conformal maps in the Clifford algebra over the lorentzian R{4,1}$ spacetime. We construct twistors in Minkowski spacetime as algebraic spinors associated with the Dirac-Clifford algebra Cl(1,3)(C) using one lower spacetime dimension than standard Clifford algebra formulations, since for this purpose the Clifford algebra over R{4,1} is also used to describe conformal maps, instead of R{2,4}. Although some papers have already described twistors using the algebra Cl(1,3)(C), isomorphic to Cl(4,1), the present formulation sheds some new light on the use of the paravector model and generalizations.Comment: 17 page
    corecore