
A Methodology for Full-System Power Modeling in
Heterogeneous Data Centers

Mauro Canuto1, Raimon Bosch1, Mario Macias1, and Jordi Guitart12

1Barcelona Supercomputing Center (BSC), 2Universitat Politecnica de Catalunya (UPC)
Barcelona, Spain

{mauro.canuto, raimon.bosch, mario.macias, jordi.guitart}@bsc.es

ABSTRACT
The need for energy-awareness in current data centers has encour-
aged the use of power modeling to estimate their power consump-
tion. However, existing models present noticeable limitations, which
make them application-dependent, platform-dependent, inaccurate,
or computationally complex. In this paper, we propose a platform-
and application-agnostic methodology for full-system power model-
ing in heterogeneous data centers that overcomes those limitations.
It derives a single model per platform, which works with high ac-
curacy for heterogeneous applications with different patterns of
resource usage and energy consumption, by systematically selecting
a minimum set of resource usage indicators and extracting complex
relations among them that capture the impact on energy consumption
of all the resources in the system. We demonstrate our methodology
by generating power models for heterogeneous platforms with very
different power consumption profiles. Our validation experiments
with real Cloud applications show that such models provide high
accuracy (around 5% of average estimation error).

1. INTRODUCTION
Energy used by data centers worldwide increased by about 56%

from 2005 to 2010, accounting for 1.5% of total energy use in
2010 [28]. This contribution is expected to increase in the following
years [16] and this has encouraged the development of techniques
to reduce the energy consumption and the environmental footprint
of data centers. These techniques require data centers to be energy-
aware, that is, they must be able to measure and predict their energy
consumption. A common approach toward energy-awareness is
through power models, which allow estimating the power consump-
tion by means of indirect evidences (such as resource usage) [31].
This differs from power measurement, which measures the actual
power consumption by means of special hardware devices. Power
models are especially helpful when direct measurement is not possi-
ble (e.g. to assess power of individual software components such as
processes or virtual machines) or expensive (e.g. to assess power at
low granularities).

A majority of the works that derive full-system power models
follow a similar methodology, which consists of the one-time offline

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

UCC ’16, December 06-09, 2016, Shanghai, China
c© 2016 ACM. ISBN 978-1-4503-4616-0/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2996890.2996899

execution of the following phases: i) deployment of a platform
for power metering and system monitoring; ii) collection of power
measurements and resource usage indicators periodically while the
system runs a special training workload; iii) model generation by
fitting the resource usage indicators to the power measurements with
some machine learning technique; iv) model validation.

However, many of those works present noticeable limitations.
First, some models only consider the impact of the processor on
the power consumption [23]. Whereas the processor has been the
main contributor to the power consumed by traditional HPC appli-
cations, modern data centers run heterogeneous applications with
diverse resource usage [32], including the memory, the disk, and the
network. Note that those subsystems apart from the processor have
been reported to make up 40%-60% of the total power consumption
depending on the workload [18]. In order to avoid models that are
specific for CPU-intensive applications, the impact on the power
consumption of the rest of subsystems should be also considered.

Second, some authors do not perform an adequate selection of
indicators to account for the usage of each resource. On one side,
some of them simply apply machine learning techniques with all
the indicators provided by the monitoring framework [19], which
increases the complexity of the data mining process and makes
it harder to find correlations between the resource usage and the
power consumption. On the other side, other authors use indicators
that are not unequivocally correlated with the power consumption
incurred by a given resource. For instance, the utilization is not
the best indicator of the processor usage because applications with
the same processor utilization can have different processor power
consumption depending on what instructions they are executing [27].
For this reason, the utilization cannot be the unique determinant
of the processor power consumption, though it could be used to
further refine a model that considers, for instance, the number of
operations executed. According to this, the modeling methodology
should exploit the capabilities of machine learning techniques to
systematically filter the relevant indicators.

Third, proposed models have commonly assumed a linear relation
between the power consumption and the resource usage [22], which
provided a reasonable accuracy with low computational complexity
in traditional platforms. However, linear models are weak in mod-
ern platforms such as multicore systems [30], thus models able to
accurately capture non-linear relations while incurring a reasonable
computational complexity are required. Whereas machine learning
is a very powerful technique to capture data correlations, detecting
complex correlations requires driving the mining process by includ-
ing derivatives of the resource usage indicators that capture better
their relation with the power consumption.

Fourth, some models are flawed because of the design of the
training or the validation workloads. On one side, some authors only

include a given kind of applications in the training workload [34],
which results in inaccurate estimations for the rest of applications.
The training workload should be generic, able to capture the es-
sentials of the power behavior of the modeled host when running
heterogeneous applications. On the other side, some authors validate
the model with the same applications used to train it [20], which
does not provide any insight about its accuracy with the rest of
applications. The validation and the training workloads should be
independent.

Finally, some modeling works require a priori knowledge of
the target platform, for instance, to select the input performance
indicators of the model [18], thus forcing to completely rethink
the methodology when a different platform wants to be modeled.
According to this, the modeling methodology should be designed
from the beginning with platform heterogeneity in mind in order
to homogenize the tools in all the platforms and automatize the
modeling procedure.

In this paper, we propose a methodology for full-system power
modeling in data centers. At first glance, the proposed methodology
is similar to former proposals. However, we have revisited, refined,
and improved the whole procedure to overcome the limitations of
the previous works. In particular, our methodology:

• Derives full-system power models by considering the impact
on energy consumption of all the resources in the system,
namely processor, cache, memory, disk, and network, and can
be easily extended to include other resources (i.e. GPUs) as
needed.

• Derives a single model per platform that works with high ac-
curacy for heterogeneous applications with different patterns
of resource usage and energy consumption.

• Derives models by using a minimum set of resource usage
indicators, which are selected for each platform according to
their correlation with the power consumption.

• Derives models that capture non-linear relations between the
resource usage and the power consumption.

• Exploits machine learning techniques to drive the selection
of resource usage indicators and the capture of non-linear
relations without human intervention.

• Gets full-system information needed to generate the models
by means of a comprehensive monitoring framework that
seamlessly integrates several data sources, including system
information, performance counters, and overall power con-
sumption measures.

• Uses the same training set for each platform, which is inde-
pendent of the applications used to validate the models and
comprises various micro-benchmarks that selectively stress
each resource at varying levels of utilization.

• Validates the models with real applications, which are com-
monly found in Cloud data centers, with different patterns of
resource usage and energy consumption.

• Achieves platform- and application-agnosticism by using the
same tools and systematically following the same steps to
derive power models in heterogeneous platforms.

In addition, we demonstrate our methodology by generating
power models for heterogeneous platforms with very different power
consumption profiles. The evaluated platforms range from high-
performance server architectures based on Intel Xeon and AMD

Opteron to low-power architectures based on Intel Atom and ARM
Cortex-A. None of the proposed methodologies up to now has been
demonstrated in so diverse platforms regarding their power con-
sumption.

The remainder of the paper is as follows. Section 2 presents the
related work. Section 3 introduces the collection of the data required
to build the models, whereas Section 4 describes the steps needed to
generate such models from the data collected. The validation of the
derived models is presented in Section 5 and the paper is concluded
in Section 6.

2. RELATED WORK
Power models have been extensively used in the last years to

enable energy-awareness in data centers. They range from models
focusing on individual subsystems (especially the processor) to
models considering the consumption of the entire system. Mobius
et al. [31] presented a qualitative comparison of different models
proposed on those areas, as well as models that estimate the power
consumption of virtual machines.

Some authors have provided also quantitative comparisons of
power models. In particular, Rivoire et al. [33] compared several
full-system power consumption models, which had been proposed
by Fan et al. [23], Heath et al. [25], and Economou et al. [22]. They
concluded that CPU utilization is not a good proxy for full-system
power consumption, less detailed models may yield better results if
a large contributor to the power is not modeled, the nuances of how
the performance counters are defined across platforms do matter,
and high-level interfaces to get insights about memory and disk
power are required.

McCullough et al. [30] also compared a number of linear and non-
linear regression models (including advanced modeling techniques
such as Lasso regression) evaluating their accuracy in modern mul-
ticore platforms. Their results showed that power models doubled
their prediction error in multicore platforms in comparison to their
execution on a single core. Prediction errors were noticeably higher
for linear models on individual subsystems such as the processor,
where non-linear models only provided marginal improvement. Mc-
Cullough et al. posited that this is due to effects such as cache
contention, processor performance optimizations, and hidden device
states not exposed to the operating system.

Some authors proposing full-system power consumption models
use a similar methodology to our proposal. In particular, Bircher and
John [18] estimated the power consumption of a complete system
by extending the concept of using performance events as proxies for
power measurement beyond the microprocessor to various subsys-
tems. They trained each subsystem with a high-utilization workload,
comprising a subset of the validation set and small synthetic work-
loads, while sampling the performance counters and only tracking
the power on the corresponding subsystem. An initial selection
of performance counters, which was dictated by an understanding
of subsystem interactions, was then correlated with the measured
power consumption using linear regression. If accuracy was not
enough, the authors tried first to expand the selection of performance
counters and then to use polynomial regression.

Cupertino et al. [19] proposed a methodology to model the power
consumption of computing systems, which consisted on training
the system with custom micro-benchmarks to stress the CPU, the
cache, the memory, and the network, while gathering system in-
formation, performance counters, and model specific registers, as
well as the overall power consumption. Then, they used Artificial
Neural Networks to correlate the power consumption and all the
captured performance indicators. Whereas neural networks can cap-
ture non-linear relations, they require that all variables used during

the training phase cover their entire spectrum of values to achieve
an accurate estimation. Because of this and the lack of selection of
performance indicators (which complicates the mining process), this
approach presented noticeable errors (up to 30%) when validated
with a workload comprising several HPC applications.

Economou et al. [22] introduced a method for modeling full-
system power consumption so-called Mantis. They used a one-time
calibration phase to capture some fixed system utilization metrics
and performance counters, as well as the overall power consumption,
while running a generic application emulator. Those metrics were
then correlated to the power consumption by means of linear pro-
gramming. Mantis presented up to 15% estimation error, especially
on CPU-intensive benchmarks, mainly because its assumption of
linearity and the use of the utilization as the sole indicator of the
CPU usage.

Jarus et al. [26] introduced a methodology for creating power
models based on the analysis of performance counters only related
to CPU, cache, and memory behavior, which were captured, to-
gether with the overall power consumption, while running some
selected HPC programs. Captured data was then clustered to create
different models for groups of applications from the training set that
share similar characteristics. A decision tree was also derived from
captured data to select an appropriate power consumption model
according to values of the performance counters. For each cluster
of applications, the model that correlates the performance counters
with the power consumption was derived by means of stepwise
regression with forward selection. To capture non-linear relations,
several transformations (none, logarithm, and square root) on the
variables were also evaluated and included in the set if accuracy got
improved. The training set in this work seems to be very specific
for HPC applications. Even within the HPC domain, it is not clear
how well other applications would fit in the clusters identified by
the authors.

Witkowski et al. [34] presented a practical approach to power con-
sumption estimation of both individual applications and entire nodes,
though captured variables were only related to CPU, motherboard,
and memory. To this end, they captured performance counters, sys-
tem statistics, CPU core temperature data, as well as the overall
power consumption, while running selected HPC applications. An
initial selection of variables, comprising those with the highest cor-
relation with the measured power, was then fitted with the measured
power consumption by means of linear regression. Other variables
were added as long as the coefficient of determination increased.
Non-linear behaviors were captured by including also transformed
derivatives of some variables in the regression. The authors sim-
ply analyzed the graphs showing their relation with the measured
power consumption to determine the correct transformation to ap-
ply. Validation was performed by using the same HPC applications
comprised in the training set. Whereas the authors claimed that
their estimation method was designed for clusters with a relatively
constant set of applications, its accuracy for non-HPC applications
(and HPC applications not included in the training set) could be
questioned.

Da Costa and Hlavacs [20] described a methodology for predict-
ing the power consumption of a standard off-the-shelf PC. To this
end, they measured performance counters, host and process related
information, as well as the overall power consumption, while run-
ning synthetic workloads to stress CPU, memory, network, and disk.
Captured explanatory variables (after including also their squared
values) were then correlated with the power consumption via re-
gression analysis. The obtained model was validated with the same
synthetic workloads used during the training phase, thus nothing
can be said about its accuracy with real applications.

3. DATA COLLECTION
Models are generated from a collection of power measurements

and resource usage indicators gathered during a training execution
which is performed once for each modeled platform. Hardware plat-
forms considered in this work are described in Section 3.1. During
the training execution, we periodically capture system information,
performance counters, and the overall power consumption by means
of a monitoring framework, which is described in Section 3.2. The
training execution consists of a special workload that includes micro-
benchmarks that selectively stress each resource at varying levels of
utilization. By using this approach we aim to capture the essentials
of the power behavior of the modeled platform without being tied to
specific applications. The benchmarks used to stress each particular
resource are described in Section 3.3.

3.1 Hardware platforms
We generate power models for heterogeneous platforms with very

different power consumption profiles. As shown in Table 1, they
range from high-performance server architectures based on Intel
Xeon and AMD Opteron to low-power architectures based on Intel
Atom and ARM Cortex-A.

3.2 Power metering and system monitoring
Models are generated from metrics from different layers, which

are obtained by means of a comprehensive monitoring framework
that seamlessly integrates several data sources including system
information, performance counters, and overall power consumption
measures. This framework is able to retrieve key resource usage
indicators for the main subsystems of a physical host: CPU, cache,
memory, disk, and network.

The Ganglia monitoring system [29] has been used as a collector,
where all the measured data sources flow to. Ganglia facilitates the
integration of all the data sources seamlessly, as well as the adoption
of this solution on existing monitoring platforms in current data
centers. As shown in Figure 1, Ganglia comprises gmond (Ganglia
Monitoring Daemon) and gmetad (Ganglia Meta Daemon) instances.
gmond can monitor system metrics from a host and share them with
other hosts through a simple listen/announce protocol. gmetad
polls the gmond instances periodically and stores their metrics to
the hard disk in RRD format. We have also developed a custom
query mechanism integrated in the Ganglia Web (gweb) interface
that returns a JSON file containing all those metrics. In our setup,
Ganglia components do not need to run in the hosts being monitored.

Figure 1: Monitoring architecture

We run Host sFlow [6] on every single host which needs to be

Table 1: Characteristics of modeled hardware platforms
Name Platform Processors CPU Model Clock Speed Cores1 Threads1 Cache1 Memory Disk Net

srv-opt-1 HP ProLiant
DL165 G7

2 AMD
Opteron
6140

2.6 GHz 8 8 L1d: 8 x 64 KB
L1i: 8 x 64 KB
L2: 8 x 512 KB
L3: 12 MB

32 GB
DDR3-
1333

2 TB
SAS
7.2K

1
Gbps

srv-opt-2 HP ProLiant
DL165 G7

2 AMD
Opteron
6234

2.4 GHz 12 12 L1d: 12 x 16 KB
L1i: 6 x 64 KB
L2: 6 x 2 MB
L3: 16 MB

32 GB
DDR3-
1600

2 TB
SAS
7.2K

1
Gbps

srv-xeon-1 HP ProLiant
DL160 G6

2 Intel
Xeon
X5650

2.66 GHz 6 12 L1d: 6 x 32 KB
L1i: 6 x 32 KB
L2: 6 x 256 KB
L3: 12 MB

24 GB
DDR3-
1333

2 TB
SAS
7.2K

1
Gbps

srv-xeon-2 HP ProLiant
DL160 Gen8

2 Intel
Xeon
E5-2650

2 GHz 8 16 L1d: 8 x 32 KB
L1i: 8 x 32 KB
L2: 8 x 256 KB
L3: 20 MB

32 GB
DDR3-
1600

2 TB
SAS
7.2K

1
Gbps

srv-atom ASUS
AT3N7AI
Twin-1U
Rackmount

1 Intel
Atom 330

1.6 GHz 2 4 L1d: 2 x 24 KB
L1i: 2 x 32 KB
L2: 2 x 512 KB
L3: none

4 GB
DDR2-
800

320
GB
SATA
7.2K

1
Gbps

srv-arm Samsung
Exynos 5
Dual Arndale
Board

1 ARM
Cortex-
A15

1.7 GHz 2 2 L1d: 32 KB
L1i: 32 KB
L2: 1024 KB
L3: none

2 GB
DDR3-
800

8 GB
USB

100
Mbps

1 Per Processor

monitored to capture the system-level metrics about CPU, mem-
ory, disk, network, and processes. They include, for instance, the
processor time executing user and system code, the number of disk
reads and writes, the number of input and output network packets,
the amount of free memory, etc. The Host sFlow agent can interact
with Ganglia through gmond and becomes fully integrated in its
architecture. In fact, Host sFlow allows increasing the efficiency of
Ganglia-based monitoring platforms [29]. When using Host sFlow,
gmond is used in deaf mode: it does not collect any metrics by itself
but aggregates the ones coming from several Host sFlow agents. In
fact, the Host sFlow agent is able to collect a superset of gmond base
metrics. Not only real-time system-level metrics about the behavior
of the physical host, but also metrics related to virtual machines
running in the system (captured through libvirt) and Docker contain-
ers. We will model the power consumption of virtual machines and
containers in our future work.

We use perf, which is a profiler tool supported by Linux 2.6+
based systems, to capture a rich set of performance and raw perfor-
mance event counters. They include, for instance, processor (and
cache) micro-architectural events such as the number of cycles, in-
structions retired, L1, L2, and LLC cache loads and stores, L1, L2,
and LLC cache misses, branches, etc. The raw performance event
counters are additional CPU counters that perf does not list out-of-
the-box as named counters. Examples of them are the number of
floating-point or SIMD instructions executed. To capture them, its
hexadecimal code needs to be found out using perfmon2/libpfm (as
described in [7]) and supplied to perf.

We get the overall power consumption by measuring AC power
at the outlet by means of different power sensors depending on
the platform: a WattsUp sensor, with an accuracy of ±1.5%, for
low-power platforms, and an HP Intelligent Power Distribution
Unit (iPDU), with an accuracy ±1.5 Watt at current > 20 mA

and accessible via SNMP, connected to the rest of the platforms.
A separate driver has been developed for each sensor type. Note
that measuring AC power at the outlet has been suggested as the
most architecture independent and less intrusive method for power
metering [19].

We gather also some custom system metrics, such as the CPU
utilization per core (captured using the psutil Python library), and
the number of active sockets, cores, and threads (calculated by
cross-linking the information from /proc/cpuinfo and the CPU
utilization per core).

Those additional metrics to the ones collected by gmond (i.e. per-
formance counters, psutil metrics, and power metrics) are integrated
into Ganglia by using a custom metric collection framework (imple-
mented in Python) that injects them to gmond using gmetric, which
allows each gmond instance within a cluster to read and store these
new metrics as if they had been originally collected by gmond.

Most of the gathered metrics are the same for all the platforms.
Only some performance counters can vary, in particular the raw
counters that refer to micro-architectural events specific for each
processor (e.g. number of floating-point instructions executed by
the Streaming SIMD Extensions (SSE) in Intel processors).

Data is sampled with a different frequency depending on the
platform: 0.2 Hz for low-power platforms and 0.5 Hz for the rest
of platforms. We have set such frequencies based on the sampling
speed of the power sensors used (1 second for the WattsUp and 0.5
seconds for the HP iPDU) and to keep the monitoring overhead low.
The sampled value for each metric designates the number of events
of such metric occurred during the corresponding sampling interval,
which allows capturing how the metric varies over time.

3.3 Training micro-benchmarks
The training set comprises several micro-benchmarks that se-

lectively stress different components of the target platform (CPU,
cache, main memory, network, and disk) at different intensity lev-
els. We created a series of scripts that automatically execute those
benchmarks on the different platforms.

3.3.1 CPU and cache memory
We stress the CPU and cache subsystems by using the following

micro-benchmarks:

• Ibench (Integer, FP) [21]: SoI11 and SoI12 benchmarks have
been adapted to perform different types of operations (floating-
point, integer, and square root).

• Stress-ng CPU v.0.03.03 [13]: nearly 70 CPU-specific stress
tests that exercise floating point, integer, bit manipulation,
control flow, and cache thrashing.

• Sysbench CPU v.0.4.12 [14]: calculates prime numbers using
64-bit integers.

• Prime95 v.285 [5]: makes heavy use of integer, floating point,
and SIMD instructions by computing Mersenne prime num-
bers. It is not supported in the srv-arm platform.

• Linpack-neon [11]: includes double precision and single pre-
cision vector operations for ARM v7 CPUs and it has replaced
the Prime95 benchmark in the srv-arm platform.

We perform several executions of these micro-benchmarks in-
creasing the number of threads involved (running several instances
of the benchmark when needed). For those executions, we have
increased the intensity for each thread from 0% to 100% through
cpulimit [3] (excluding the Prime95 and Linpack-neon benchmarks).
In such a way, we can stress different number of CPU cores and
cache levels and analyze the impact on the power of technologies
such as hyperthreading.

3.3.2 Main memory
We stress the main memory subsystem (both memory capacity

and bandwidth) by using the following micro-benchmarks. They are
’main-memory-specific’ benchmarks, but they also involve cache
memory to some extent.

• Stress-ng VM v.0.03.03 [13]: over 20 virtual memory stress
tests where different workers modify memory in predefined
ways. We perform several executions increasing the number
of workers.

• Pmbw v.0.6.2 [9]: measures the parallel memory bandwidth
of multi-core machines by executing different modes of mem-
ory access (ranging from sequential scanning to pure random
access and including different memory transfer sizes) with in-
creasing array size and thread count (evenly dividing the array
among threads). We perform several executions increasing
the number of threads.

• STREAM v.5.10 [12]: measures sustainable memory band-
width (in MB/s) for simple vector operations. We perform
several executions controlling the array size and the number
of threads.

3.3.3 Disk
We stress the disk subsystem with the following micro-benchmarks:

• Stress-ng hdd v.0.03.03 [13]: starts a variable number of
workers spinning on write operations followed by unlinking
the file. We perform several executions increasing the number
of workers.

• Fio v.2.1.9 [4]: spawns a number of threads or processes doing
a particular type of I/O actions: sequential reads, sequential
writes, random reads, and random writes. We perform several
executions increasing the bandwidth rate with steps of 10%
of the maximum supported.

3.3.4 Network
We stress the network subsystem using the iperf v.3.0.1 [8] bench-

mark. We perform several executions increasing the bandwidth with
steps of 10% of the maximum network capacity.

4. MODEL GENERATION
Figure 2 shows the procedure used to generate and validate the

power model for each platform, which has been automated by using
the R package, a programming language and software environment
for statistical computing [15]. The different phases involved are
described in this section.

First, the datasets obtained through the execution of the training
micro-benchmarks are pre-processed to set the captured data into a
suitable form to work with. This includes i) retrieving the data in
a JSON format through the gweb component and converting them
to csv files with the same internal structure, and ii) removing and
fixing incomplete records or in a wrong format produced by failures
of the monitoring system.

The set of representative features that will be used to generate
the model must be then selected. Note that the monitoring system
provides a large number of resource usage indicators, but many
of them may not be necessary for modeling the power. Including
them will unnecessarily slow down the modeling process and can
affect the accuracy of the models. An initial selection of features
is obtained by excluding those showing not significant variance in
the training experiments. This selection is further refined by using
a novel approach to analyze the training set, which assesses the
relation of each feature with the power while capturing non-linear
behaviors. Although the model will finally be built using a training
set consisting of the union of all the micro-benchmarks, this analysis
is done considering each resource usage indicator on each micro-
benchmark separately, because it is harder to recognize correlations
among metrics after joining all the training datasets. For instance,
Figure 3 shows the relation between power consumption and L1 data
cache loads considering the entire training set in srv-xeon-2 platform.
Several patterns can be appreciated, since each benchmark stresses
a different resource at various intensities. Therefore, it would be
very difficult to model the different patterns at the same time (i.e.
with a single coefficient, if using linear regression). Thanks to the
per-micro-benchmark analysis, our methodology is able to capture
several correlations for each resource usage indicator.

For each resource usage indicator on each micro-benchmark, we
perform a regression analysis to find the expression that shows best
(in terms of the coefficient of determination) the relation of such met-
ric with the power consumption in that particular micro-benchmark.
To capture non-linear behaviors, we assess polynomial (including
fractional exponents to represent nth-root relations) and logarithmic
transformations of the metric. Note that including such transfor-
mations in the training dataset will steer the mining algorithm to
recognize the correlation of such metric with the power. If a logarith-
mic function returns the best correlation, we apply the log(metric)
transformation to the data corresponding to that metric. If the rela-
tion fits better with a polynomial function, we apply the metricα

transformation to the data. The α parameter is obtained through the
nls function from stats package for R language, which determines
non-linear least-squares estimates of non-linear models. Note that
α being 1 means that the metric does not need to be transformed. In

Figure 2: Model generation (top) and validation (bottom) procedures

Figure 3: Relation between power consumption and L1 data
cache loads for the entire training set in srv-xeon-2

any case, if the correlation with the power is not significant (lower
than 0.95), this resource usage indicator is not selected.

For example, as shown in Figure 4, the relation between the power
and the number of CPU cycles for the Prime95 micro-benchmark
in srv-xeon-2 platform is best approximated by using a logarithmic
function, so this is transformation that we apply to the CPU cycles
data from that benchmark. Note that we do not support piecewise-
defined functions, which could fit better in this example, because
either human support is required to identify the breakpoints, which
would make our methodology not automatic, or the automatic de-
tection of breakpoints tends to overestimate the number of them,
which would probably overfit the model. However, this does not
significantly impact the resulting accuracy of our models.

The final training dataset to be supplied to the mining algorithm
is generated by joining the datasets of all the micro-benchmarks,
filtering the selected features, and performing the polynomial and
logarithmic transformations studied before. We use then linear
regression in order to fit our model (lm function from stats package
for R language).

The resulting model can still include some features that do not

Figure 4: Relation between power consumption and CPU cy-
cles for Prime95 micro-benchmark in srv-xeon-2

determine the model significantly, basically because they have essen-
tially the same behavior. We remove those features from the feature
set before generating the final model. To this end, we compute the
p-value of each feature regarding the power consumption. A large
p-value (higher than 0.05) indicates a weak influence of the feature
on the model, thus it can be discarded from the feature set.

5. MODELS VALIDATION
We validate the models derived for each hardware platform with

real applications, which are commonly found in Cloud data centers,
with different patterns of resource usage and energy consumption.
Those applications are described in Section 5.1. As shown in Fig-
ure 2, we execute the applications in the target platform while
capturing their performance indicators by means of the monitoring
framework, we filter the selected features and transform the captured
data as described in previous section, and we apply the power model
of the corresponding platform using as input the transformed data.
Note that we do not need to execute the entire application to get
power estimations. They can be dynamically calculated over time

by using the captured data at each monitoring interval.
The validation includes a numerical assessment of the models

accuracy as well as detailed time plots comparing real and estimated
power consumption. We compare the accuracy of our models (la-
beled ’OURS’ in the tables) with some models derived by means of
the methodology proposed by McCullough et al. [30], which uses
Lasso regression to automatically incorporate just enough features
as are necessary. In particular, we use their methodology to build
linear models (labeled ’LNLS’ in the tables) and non-linear poly-
nomial models (labeled ’PLLS’ in the tables) by using the glmnet
package to perform a Lasso regression on a filtered set of features
after discarding those with low correlation with power consumption.
As in their paper, the optimal value for the λ parameter is selected
by cross validation on the training data and non-linear models are
generated including polynomial terms with exponents from 1 to 3.

The accuracy of the models is computed by comparing the power
estimations obtained from the model with the actual measured values
by using the Mean Absolute Percentage Error (MAPE), which is
calculated as in Equation 1.

MAPE =
1

n

n∑
t=1

|Pactuali − Pmodeledi
Pactuali

| ∗ 100 (1)

Note that these accuracy values also include some error caused
by external factors to the modeling procedure. For example, they
are affected by the accuracy of the power sensor itself and by the
multiplexing of hardware counters: the number of events that are
physically counted during each sampling period is limited by the
number of counters that can be simultaneously accessed and, during
this period, the remaining events of the multiplexed event-set are
estimated.

5.1 Validation workload
The workload used to validate the power models includes tradi-

tional HPC applications, but also novel Big Data programs, which
have not been considered in the previous works on full-system
power modeling. We have used CloudSuite and NAS benchmarks
to provide such real-world application profiles.

CloudSuite 2.0 [24] comprises eight scale-out applications that
feature real-world server software stacks and datasets. Refer to [2]
for additional installation and configuration details.

• Data Analytics: performs machine learning tasks to analyze a
30 GB Wikipedia dataset by using Mahout libraries running
on top of Hadoop. We used a smaller dataset (1.4 GB) in
order to overcome the lack of available disk space in some of
our platforms.

• Data Caching: simulates a Twitter caching server using a
real Twitter dataset by relying on memcached, which is the
most widely used data caching server. We ran the workload
with eight client threads, 200 TCP/IP connections, and a
get/set ratio of 0.8. We changed the number of requests per
second from 10% to 90% with steps of 10% of the maximum
throughput.

• Data Serving: implements a NoSQL system by means of
Cassandra (an open-source NoSQL datastore) stimulated by
the Yahoo! Cloud Serving Benchmark. As the standard
benchmark creates very small databases, we have overridden
the default property to load 10 million of records.

• Graph Analytics: performs data analysis on large-scale graphs
by using the GraphLab software to run the TunkRank algo-
rithm, which recursively computes the influence of Twitter

users based on the number of their followers. We used a Twit-
ter dataset with 11 million of vertices (Twitter users). This
benchmark is not supported in srv-arm platform.

• Media Streaming: executes the Darwin Streaming Server
stressed by a client emulator. We have tried several real-world
scenarios by changing the number of clients simultaneously
emulated (up to 7500).

• Software Testing: uses the Cloud9 software testing engine
to run large-scale symbolic execution tasks in a Cloud envi-
ronment. We ran the benchmark with multiple independent
Cloud9 workers depending on the available cores of each ma-
chine. This benchmark is not supported in srv-arm platform.

• Web Search: uses the Nutch/Lucene search engine stimu-
lated by a client representing real-world scenarios. Server and
client were installed in two different machines. In addition
to the default client, we also used Apache JMeter [1] to emu-
late different number of clients accessing the search engine
simultaneously (up to 100 clients).

• Web Serving: uses CloudStone running the PHP version of
Olio (a Web 2.0 social-events application) to generate dy-
namic web traffic. The benchmark consists of three main
components: a web server, a database backend, and a client
to emulate real-world accesses to the web server. Client and
web server (together with the database) run in two different
machines. We ran the benchmark several times changing the
number of concurrent users that send requests to the web
server (scaling factor up to 200).

NAS Parallel Benchmarks (NPB v.3.3) [17] were used as HPC
representatives. We executed the serial, MPI, and OpenMP im-
plementations of three pseudo-applications implementing complex
matrix solvers, namely Block Tri-diagonal solver (BT), Scalar Penta-
diagonal solver (SP), and Lower-Upper Gauss-Seidel solver (LU),
using problem sizes C and D (the latter only for OpenMP implemen-
tations in high-performance servers). Refer to [10] for more details
on each problem size.

The number of processes of the MPI implementations have been
changed (without exceeding the number of CPUs available) in order
to try different configurations. Applications SP and BT require
a number of processes that must be a square (4, 9, 16, ...), while
application LU supports a power-of-2 number of processes (2, 4, 8,
...). OpenMP implementations have been executed using as many
threads as the maximum number of cores available in each system.

5.2 Validation of power models for high-perfor-
mance platforms

Table 2 shows the accuracy of the models derived for the Intel
Xeon platforms. Although the high complexity of these platforms
raises the difficulty of modeling them (mainly due to the high num-
ber of cores they have), the average MAPE of our models is 4.3%
for srv-xeon-1 and 5.7% for srv-xeon-2 considering all the set of
benchmarks. This rate is very accurate considering that we do not
focus on any specific type of application but our methodology can
be applied to a wide set of applications in different platforms. Lasso
models provide good accuracy for some applications, especially
NAS HPC jobs in srv-xeon-1, but fail to model others, especially
CloudSuite benchmarks in srv-xeon-2. Polynomial Lasso model
cannot achieve the same accuracy as its linear counterpart for NAS
HPC jobs in srv-xeon-2 either.

Table 2: Validation errors for Intel Xeon platforms
srv-xeon-1 srv-xeon-2

Benchmark LNLS
MAPE

PLLS
MAPE

OURS
MAPE

LNLS
MAPE

PLLS
MAPE

OURS
MAPE

Data Analytics 9.62 6.52 7.32 6.08 13.82 5.58
Data Caching 6.54 5.31 3.44 21.01 15.97 5.59
Data Serving 3.25 2.31 0.95 19.75 14.29 3.27
Graph Analytics 7.69 14.31 3.58 3.88 14.93 5.17
Media Streaming 5.67 3.23 0.76 33.81 4.47 1.59
Software Testing 6.36 9.91 5.04 6.91 5.83 6.92
Web Search 85.48 210.08 6.29 47.71 51.39 8.55
Web Serving 4.4 1.34 0.8 8.39 5 3.07
BT (MPI,C) 2.65 8.95 4.63 8.42 12.2 9.19
LU (MPI,C) 6.6 11.14 5.46 4.98 6.4 8.36
SP (MPI,C) 6.55 6.24 9.52 14.72 14.9 8.6
BT (OMP,D) 5.38 4.47 2.97 5.46 20.9 5.3
LU (OMP,D) 8.9 9.36 3.21 3.69 24.93 2.66
SP (OMP,D) 4.14 4.7 5.56 5.44 20.41 6.06
BT (SER,C) 2.42 2.23 2.01 8.84 13.75 6.68
LU (SER,C) 3.79 4 6.17 6.47 16.47 4.66
SP (SER,C) 2.3 2.18 4.84 4.64 15.85 6.3

Figure 5 and Figure 6 present a comparison of estimated and
real power consumption for the Media Streaming benchmark run-
ning in srv-xeon-1 and the Data Analytics benchmark running in
srv-xeon-2, respectively, demonstrating that the values predicted
with our models closely follow the real measurements. The Media
Streaming benchmark is executed four times with different number
of concurrent clients. The Data Analytics benchmark comprises the
generation of a classifier model (up to sample 2500) and the testing
of such model.

Figure 5: Comparison of power consumption predicted with
our model and real measurements on srv-xeon-1 platform run-
ning Media Streaming benchmark

Table 3 summarizes the accuracy of the models derived for the
AMD Opteron platforms. Despite the high range of power con-
sumption that can be generated by the two platforms (up to 400 W
for srv-opt-1 and 360 W for srv-opt2), the average error of our
models is still very low: 5.4% for srv-opt-1 and 5.7% for srv-opt-2.
Predictions errors are noticeable for Lasso models, especially with
CloudSuite benchmarks.

Figure 7 and Figure 8 compare the power consumption estimation
and the actual power for the NAS BT (MPI implementation and class
C) running in srv-opt-1 and the Web Serving benchmark executed in
srv-opt-2, respectively. The NAS BT benchmark is executed three

Figure 6: Comparison of power consumption predicted with
our model and real measurements on srv-xeon-2 platform run-
ning Data Analytics benchmark

Table 3: Validation errors for AMD platforms
srv-opt-1 srv-opt-2

Benchmark LNLS
MAPE

PLLS
MAPE

OURS
MAPE

LNLS
MAPE

PLLS
MAPE

OURS
MAPE

Data Analytics 8.28 10.82 6.3 19.25 13.08 9.79
Data Caching 42.81 7.18 6.45 10.97 71.83 4.84
Data Serving 6.93 3.67 9.36 17.76 60.55 9.56
Graph Analytics 12.39 12.25 8.65 13.63 11.16 6.57
Media Streaming 21.07 12.26 1.82 7.87 4.42 2.58
Software Testing 6.87 5.07 3.01 9.45 5.25 3.46
Web Search 6.43 2.87 2.29 11.46 8.71 4.99
Web Serving 13.74 5.37 6.65 7.11 4.87 3.46
BT (MPI,C) 7.54 2.2 1.91 6.81 3.09 3.13
LU (MPI,C) 8.87 11.93 5.28 11.08 6.65 8.22
SP (MPI,C) 8.69 8.84 6.1 13.3 6.86 10.36
BT (OMP,D) 8.47 6.09 5.56 5.15 5.03 5.93
LU (OMP,D) 10.77 2.35 3.2 6.68 5.72 3.43
SP (OMP,D) 4.68 3.09 3.1 4.65 3.98 4.16
BT (SER,C) 9.95 17.31 8.27 19.19 15 5.59
LU (SER,C) 10.31 17.23 8.36 12.66 10.02 5.3
SP (SER,C) 9.01 15.06 5.63 10.67 6.76 4.87

times, the first with 25 processes (up to sample 2100), the second
with 4 processes (from sample 2100 to 2375), and the third with 9
processes (from sample 2375 to the end). The Web Serving bench-
mark is executed nine times with different number of concurrent
clients. Results of our models for the AMD Opteron platforms are
in line with the Intel platforms previously analyzed and confirm that
the proposed methodology can produce good results for different
server families and configurations.

5.3 Validation of power models for low-power
platforms

The accuracy of our models in low-power platforms is also very
promising (as shown in Table 4). The average MAPE for srv-atom
is 2.6% and for srv-arm is 5.2%, which is consistent with the results
in the previous section, despite the platforms are very different and
the range of power consumption is much lower. Whereas Lasso
models provide very good accuracy for NAS HPC jobs in srv-atom,
they show important errors for CloudSuite benchmarks. They also
provide low accuracy in srv-arm for all the applications, especially
Big Data ones.

The accuracy of our models can be seen in Figure 9, which shows

Figure 7: Comparison of power consumption predicted with
our model and real measurements on srv-opt-1 platform run-
ning NAS BT (MPI,C) benchmark

Figure 8: Comparison of power consumption predicted with
our model and real measurements on srv-opt-2 platform run-
ning Web Serving benchmark

a comparison of the estimated and real power for the Software
Testing benchmark running in srv-atom, and Figure 10, which shows
the power estimation for the Data Caching benchmark running in srv-
arm. The Software Testing benchmark is executed four times, with 1,
2, 3, and 4 worker tasks, respectively. The Data Caching benchmark
is executed nine times with different number of requests served per
second. The estimations closely follow the real measurements with
deviations of less than 1 W, which is lower than the accuracy of the
power sensor itself.

Figure 9: Comparison of power consumption predicted with
our model and real measurements on srv-atom platform run-
ning Software Testing benchmark

6. CONCLUSIONS
In this paper, we have proposed a platform- and application-

agnostic methodology for full-system power modeling in heteroge-

Table 4: Validation errors for low-power platforms
srv-atom srv-arm

Benchmark LNLS
MAPE

PLLS
MAPE

OURS
MAPE

LNLS
MAPE

PLLS
MAPE

OURS
MAPE

Data Analytics 1.08 1.17 1.79 31.43 713.5 6.18
Data Caching 8.28 176.5 4.17 18.45 144.44 4.33
Data Serving 2.4 5.92 1.83 20.07 42.01 4.09
Graph Analytics 7.67 3.70 6.52 - - -
Media Streaming 62.49 37.06 1.94 24.86 63.64 6.3
Software Testing 1.99 0.51 0.81 - - -
Web Search 5.36 4.46 1.6 16.97 28.46 5.72
Web Serving 10.74 4.64 3.14 19.93 11.62 15.61
BT (MPI,C) 0.99 0.85 1.96 10 17.42 3.73
LU (MPI,C) 1.92 2.03 4.09 12.87 15.68 4.69
SP (MPI,C) 1.88 1.60 2.41 13.81 18.78 3.26
BT (OMP,C) 2.06 1.99 2.03 5.95 11.97 5.98
LU (OMP,C) 3.05 2.08 1.44 9.6 12.19 3.26
SP (OMP,C) 4.84 4.18 5.12 15.66 19.77 2.73
BT (SER,C) 1.05 0.82 1.75 6.8 12.81 5.32
LU (SER,C) 2.02 2.13 2.38 10.23 12.73 3.87
SP (SER,C) 2.41 2.65 2 15.76 19.9 2.82

Figure 10: Comparison of power consumption predicted with
our model and real measurements on srv-arm platform running
Data Caching benchmark

neous data centers based on collecting power and resource usage
measurements while running a special training workload and fitting
them through machine learning. Our methodology overcomes the
limitations of the previous works. It derives a single model per
platform by systematically selecting a minimum set of resource
usage indicators and extracting complex relations among them that
capture the impact on energy consumption of all the resources.

We have demonstrated our methodology by generating power
models for heterogeneous platforms with very different power con-
sumption profiles ranging from high-performance server architec-
tures based on Intel Xeon and AMD Opteron to low-power archi-
tectures based on Intel Atom and ARM Cortex-A. Our experiments
with real Cloud applications with different patterns of resource us-
age and energy consumption, represented by CloudSuite and NAS
benchmarks, show that such models provide high accuracy (around
5% of average estimation error) and that power consumption esti-
mations closely follow real power measurements in the time plots
of the executions.

As part of our future work, we will enhance our methodology to
model the power consumption of individual virtual machines and
containers. We also plan to use the power models to drive energy-

aware scheduling policies that select the most convenient host where
to execute each application.

Acknowledgements
This work is supported by the Spanish Ministry of Economy and
Competitiveness under contract TIN2015-65316-P, by the Gener-
alitat de Catalunya under contract 2014-SGR-1051, and by the
European Commission under FP7-SMARTCITIES-2013 contract
608679 (RenewIT) and FP7-ICT-2013-10 contracts 610874 (AS-
CETiC) and 610456 (EuroServer).

7. REFERENCES
[1] Apache JMeter. http://jmeter.apache.org/.
[2] CloudSuite Benchmarks. http://cloudsuite.ch/.
[3] cpulimit. https://github.com/opsengine/cpulimit.
[4] fio - Flexible I/O Tester. http://git.kernel.dk/?p=fio.git.
[5] Free Mersenne Prime Search Software: Prime95.

http://www.mersenne.org/download/.
[6] Host sFlow. http://sflow.net/.
[7] How to monitor the full range of cpu performance events.

http://www.bnikolic.co.uk/blog/hpc-prof-events.html.
[8] iperf3: A TCP, UDP, and SCTP network bandwidth

measurement tool. https://github.com/esnet/iperf.
[9] pmbw - Parallel Memory Bandwidth

Benchmark/Measurement. http://panthema.net/2013/pmbw/.
[10] Problem Sizes and Parameters in NAS Parallel Benchmarks.

http:
//www.nas.nasa.gov/publications/npb_problem_sizes.html.

[11] Roy Longbottom’s Raspberry Pi & Raspberry Pi 2
Benchmarks: Linpack NEON Benchmark.
http://www.roylongbottom.org.uk/Raspberry%20Pi%
20Benchmarks.htm#anchor24b.

[12] STREAM: Sustainable Memory Bandwidth in High
Performance Computers. https://www.cs.virginia.edu/stream/.

[13] stress-ng. http://kernel.ubuntu.com/~cking/stress-ng/.
[14] sysbench. https://github.com/akopytov/sysbench.
[15] The R Project for Statistical Computing.

https://www.r-project.org/.
[16] Make IT Green: Cloud Computing and its Contribution to

Climate Change. Technical report, Greenpeace International,
2010.

[17] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L.
Carter, L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A.
Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan,
and S. K. Weeratunga. The NAS Parallel Benchmarks -
Summary and Preliminary Results. In Proceedings of the 1991
ACM/IEEE Conference on Supercomputing (SC’91),
Albuquerque, NM, USA, pages 158–165, November 1991.

[18] W. L. Bircher and L. K. John. Complete System Power
Estimation Using Processor Performance Events. IEEE
Transactions on Computers, 61(4):563–577, April 2012.

[19] L. Cupertino, G. Da Costa, and J.-M. Pierson. Towards a
Generic Power Estimator. Computer Science - Research and
Development, 30(2):145–153, May 2015.

[20] G. Da Costa and H. Hlavacs. Methodology of Measurement
for Energy Consumption of Applications. In Proceedings of
the 11th IEEE/ACM International Conference on Grid
Computing (GRID’10), Brussels, Belgium, pages 290–297,
October 2010.

[21] C. Delimitrou and C. Kozyrakis. iBench: Quantifying
Interference for Datacenter Applications. In Proceedings of

the 2013 IEEE International Symposium on Workload
Characterization (IISWC’13), Portland, OR, USA, pages
23–33, September 2013.

[22] D. Economou, S. Rivoire, C. Kozyrakis, and P. Ranganathan.
Full-System Power Analysis and Modeling for Server
Environments. In Proceedings of the 2nd Workshop on
Modeling, Benchmarking and Simulation (MoBS’06), Boston,
MA, USA, June 2006.

[23] X. Fan, W.-D. Weber, and L. A. Barroso. Power Provisioning
for a Warehouse-sized Computer. SIGARCH Computer
Architecture News, 35(2):13–23, June 2007.

[24] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi. Clearing the Clouds: a Study of Emerging
Scale-out Workloads on Modern Hardware. In Proceedings of
the 17th International Conference on Architectural Support
for Programming Languages and Operating Systems
(ASPLOS ’12), London, UK, pages 37–48, March 2012.

[25] T. Heath, B. Diniz, E. V. Carrera, W. Meira, Jr., and
R. Bianchini. Energy Conservation in Heterogeneous Server
Clusters. In Proceedings of the 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel
Programming (PPoPP’05), Chicago, IL, USA, pages 186–195,
June 2005.

[26] M. Jarus, A. Oleksiak, T. Piontek, and J. Weglarz. Runtime
Power Usage Estimation of HPC Servers for Various Classes
of Real-life Applications. Future Generation Computer
Systems, 36:299–310, July 2014.

[27] A. Kansal, F. Zhao, J. Liu, N. Kothari, and A. A. Bhattacharya.
Virtual Machine Power Metering and Provisioning. In
Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC’10), Indianapolis, IN, USA, pages 39–50, June 2010.

[28] J. Koomey. Growth in Data Center Electricity Use 2005 to
2010. Technical report, Analytics Press, Oakland, CA, USA,
August 2011.

[29] M. Massie, B. Li, B. Nicholes, V. Vuksan, R. Alexander,
J. Buchbinder, F. Costa, A. Dean, D. Josephsen, P. Phaal, and
D. Pocock. Monitoring with Ganglia. O’Reilly Media, Inc.,
1st edition, 2012.

[30] J. C. McCullough, Y. Agarwal, J. Chandrashekar,
S. Kuppuswamy, A. C. Snoeren, and R. K. Gupta. Evaluating
the Effectiveness of Model-based Power Characterization. In
Proceedings of the 2011 USENIX Annual Technical
Conference (ATC’11), Portland, OR, USA, pages 159–172,
June 2011.

[31] C. Mobius, W. Dargie, and A. Schill. Power Consumption
Estimation Models for Processors, Virtual Machines, and
Servers. IEEE Transactions on Parallel and Distributed
Systems, 25(6):1600–1614, June 2014.

[32] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A.
Kozuch. Heterogeneity and Dynamicity of Clouds at Scale:
Google Trace Analysis. In Proceedings of the 3rd ACM
Symposium on Cloud Computing (SoCC’12), San Jose, CA,
USA, pages 7:1–7:13, October 2012.

[33] S. Rivoire, P. Ranganathan, and C. Kozyrakis. A Comparison
of High-level Full-system Power Models. In Proceedings of
the 2008 Workshop on Power Aware Computing and Systems
(HotPower’08), San Diego, CA, USA, December 2008.

[34] M. Witkowski, A. Oleksiak, T. Piontek, and J. Weglarz.
Practical Power Consumption Estimation for Real Life HPC
Applications. Future Generation Computer Systems,
29(1):208–217, January 2013.

