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Forty years ago van Dam, Veltman [1] and Zakharov [2] pointed out that the propagator

for a massive graviton does not have a smooth limit to the massless case. The action used is

that of Fierz and Pauli [3] with mass terms breaking general coordinate invariance explicitly.

The straightforward conclusion was that the graviton mass must be mathematically strictly

zero rather than some extremely small value because in the presence of discontinuity the

massless and massive theories would predict different results either for the perihelion shift or

deflection of starlight. This apparent paradox was resolved by Vainstein [4] who found that

the massive theory contains a new distance scale below which the massive graviton behave

like massless particle and it became clear that the graviton could have small nonvanishing

mass which still would not contradict experiments. Over the years, further development

of this scale were considered and in [5] it was clearly demonstrated how this mechanism

works (see, also [6]).

The analysis by Deser and Boulware [7] lead to the conclusion that the massive theory

is ill behaved because in addition to the five degrees of freedom of massive graviton there

must be an extra scalar degree of freedom, which does not decouple. Work by Isham,

Salam and Strathdee [8] examined a theory of bigravity with a direct mixing mass term,

where one of the gravitons becomes massive while the other remained massless. This

was generalized by Chamseddine, Salam and Strathdee [9], who considered the mixing

mass terms generated through the spontaneous breaking of gauge symmetry. (for further

developments in bigravity theories in relation with the graviton mass see [10] and references

there). There were also attempts to use theories with extra dimensions. Dvali, Gabadadze,

and Porrati [11] have invented a model based on five dimensions with an infinite size extra

dimension. Their theory when considered around a true background seems to be free

of ghosts. This theory is especially interesting because of the claim of uniqueness [12].

Further interesting steps were made in [13, 14], where general relativity with an auxiliary

non-dynamical extra dimension was considered with the purpose of obtaining effective

massive ghost-free gravity.

It was suspected that the failure of obtaining a ghost free consistent theory for a massive

graviton in four dimensions with only one metric, is related to the absence of a ghost free

Higgs mechanism that would generate the graviton mass. The string inspired theories,

considered in [15, 16] are not ghost free when considered around trivial background.

In a promising attempt ’t Hooft [17] (see also [18, 19]) exploited a collection of four

scalar fields whose vacuum expectation value breaks general coordinate invariance to give

mass to the graviton. The kinetic energies of the scalar fields were combined together using

the Minkowski metric and thus involving a ghost in the unbroken phase. In the broken

symmetry phase the model failed to produce the Fierz-Pauli term for the massive graviton,

and the ghost state could not be decoupled.

In this letter we give an elegant solution to the problem of making the graviton massive

via Higgs mechanism, and show explicitly how all Higgs fields are absorbed. The resulting

spectrum in the broken symmetry phase will consist only of a massive graviton, with Fierz-

Pauli mass term and, hence, it has five degrees of freedom. In the unbroken phase we have a

massless graviton interacting with four scalar fields, which in the linear approximation lack

a propagator. The resulting theory is well defined in all different vacua and is ghost free.
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Let us consider four fields φA, A = 0, 1, 2, 3, which are scalars under coordinate trans-

formations and assume that they posses an extra symmetry with respect to “Lorentz trans-

formations” in the field space. These transformations involve index A, thus mixing the

scalar fields and preserving the metric ηAB = diag (1,−1,−1,−1) in the field space. Next,

from φA we construct the field space tensor

HAB = gµν∂µφA∂νφ
B , (1)

symmetric with respect to A and B. The scalar field indices A and B will always be raised

and lowered with Minkowski metric ηAB . It is convenient to decompose HA
B into trace and

traceless parts as

HA
B = H̃A

B +
1

4
δA
BH, (2)

where H = HA
A and H̃A

A = 0.

To demonstrate the idea we will first consider the following action which is explicitly

diffeomorphism and Lorentz invariant and provides us the graviton mass term:

S = −1

2

∫

d4x
√−gR +

m2

2

∫

d4x
√−g



3

(

(

1

4
H

)2

− 1

)2

− H̃A
BH̃B

A



 , (3)

where 8πG = 1. It is easy to see that the equations of motion for the metric gµν and fields

φA admit the following vacuum Minkowski solution

〈gµν〉 = ηµν , φA = xA. (4)

It is this solution that identifies the global Minkowski metric ηAB with that of space-time

ηµν . We now expand the fields around this vacuum

φA = xA + χA, gµν = ηµν + hµν , (5)

Introducing

h̄AB = HAB − ηAB

= hAB+ ∂AχB + ∂BχA + ηCD∂CχA∂DχB + hAC∂CχB + hBC∂CχA + hCD∂CχA∂DχB,

(6)

where hAB = hµνδA
µ δB

ν and ∂A = δA
µ ηµν∂ν , we can rewrite action (3) in the following form

S = −1

2

∫

d4x
√−gR +

m2

2

∫

d4x
√−g

[

(

h̄2 − h̄A
Bh̄B

A

)

+
3

42
h̄3 +

3

44
h̄4

]

, (7)

where h̄A
B = ηBChAC , h̄ = h̄A

A. Note that this result is exact and we did not use any

approximation to derive it. Moreover the variable h̄A
B is diffeomorphism invariant up to

an arbitrary order in perturbations.

Now let us consider small perturbations around background (4). Then up to the linear

order in perturbations χA and hµν ,

h̄A
B = hA

B + ∂BχA + ∂AχB , (8)
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Einstein action is invariant under infinitesimal transformations x̃ = x + ξ, where metric

perturbations around Minkowski space-time transform in a way similar to (8), with χ

replaced by ξ. Therefore the full action, up to second order terms could be expressed in

terms of h̄A
B :

S =
1

2

∫

d4x
[

h̄
A,C
B h̄B

A,C − 2h̄A,C
C h̄ D

A,D + 2h̄A,C
C h̄,A − h̄,Ah̄,A − m2

(

h̄A
Bh̄B

A − h̄2
)

]

. (9)

This clearly shows that the Higgs fields φA are completely absorbed to form the massive

graviton with five degrees of freedom described by Fierz-Pauli mass term. Because we have

avoided to include a term linear in H in action (3) the theory is free of ghosts even around

a background with HA
B = 0.

One can wonder how four degrees of freedom for the scalar fields (expected naively)

could disappear giving only three extra degrees of freedom to the graviton. To understand

this let us take the limit of vanishing gravitational constant. In this case we must set

hA
B = 0 in equation (8), which then becomes

h̄A
B = ∂BχA + ∂AχB ,

and in the action

1

2

∫

d4x
(

h̄2 − h̄A
Bh̄B

A

)

=

∫

d4x
[

(

∂AχA
)2 −

(

∂AχB
) (

∂AχB

)

]

, (10)

one can immediately recognize Maxwell action for “4-vector potential” χA. Thus, around

background (4) the perturbations of four scalar fields would lose one degree of freedom,

the χ0, to leave three independent physical degrees of freedom. This accidential symmetry

is enough to garantee the absence of the propagator for an extra degree when we build

the perturbation theory around Minkowski background. In fact, it is clear that the higher

order terms being considered only as perturbations cannot induce a propagator for χ0.

The action used is not the most general one. In fact, there exist infinitely many actions

which could serve the same purpose. This is not surprising because even in the standard

electroweak theory the uniqueness of the Higgs potential is entirely due to the requirement

of renormalizability of the theory. In grand unified theories there are many possible choices

for the Higgs potential. Our action (3) possess shift symmetry φA → φA + cA where cA

are constants, and extra discrete symmetry HA
B → −HA

B . However, even these symmetries,

which could protect against the appearance of unwanted quantum corrections, are not

enough to fix the action unambiguously.

At first glance a possible simple action which could serve the purpose is

m2

2

∫

d4x
√−g

(

h̄2 − h̄A
Bh̄B

A

)

, (11)

which, when rewritten in terms of HA
B = δA

B + h̄A
B , takes the form

m2

2

∫

d4x
√−g

(

H2 − HA
BHB

A − 6H + 12
)

. (12)
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In this form it is clear that the linear term contains a ghost. Nevertheless this problem

can be easily fixed by adding to the action terms which are not “Lorentz invariant” with

respect to transformations in the space of field configurations. There is nothing wrong with

such terms because these still preserve diffeomorphism and space-time Lorentz invariance.

The only thing about which we have to take care of is that the corresponding terms will not

spoil the action in quadratic order around Minkowski background (4). For example, if we

add to (12) the term 2(H0

0
− 1)3 the ghost disappears and around Minkowski background

the action (12) is modified to

m2

2

∫

d4x
√−g

(

h̄2 − h̄A
Bh̄B

A + 2
(

h̄0

0

)3
)

. (13)

The last term here looks like a Lorentz violating term. However as we have stressed above

this does not mean that we have abandoned the fundamental Lorentz invariance of space-

time. Note that around a trivial background with HA
B = 0 the linearized scalar fields are

propagating and have three degree of freedom.

Returning back to action (3) we find that the trace of the energy momentum of the

scalar fields is equal to

T µ
µ =

m2

2

(

3

128
H4 − 6

)

, (14)

and therefore energy is bounded from below. This action is ghost free in linear order around

both, trivial and Minkowski, backgrounds. On the other hand, because the time derivative

of the fields appear in the action in the combination

(

φ̇0

)2

−
(

φ̇i
)2

,

one may worry that the phase space of
(

φ̇0

)2

might be unbounded and the problem with

ghosts can reappear at the nonlinear level. This problem can be easily solved by adding

to the action terms which depend only on H0

0
and do not modify the action at quadratic

order around Minkowski background.

When the background scalar fields disappear, that is HA
B = 0, the graviton decouples

from the scalar fields and becomes massless. In this case, however, there appears negative

cosmological constant of order m2 and the solution of the Einstein equations is anti de Sitter

space. One can naturally ask whether the appearance of a negative cosmological constant

is an inherent property needed for producing the graviton mass via Higgs mechanism? In

fact, it is not the case and we can easily find an action with zero or positive cosmological

constant. For example, let us consider

m2

2

∫

d4x
√−g





(

(

1

4
H

)2

− 1

)2(

α

(

1

4
H

)2

− β

)

− H̃A
BH̃B

A



 . (15)

If the constants α and β satisfy the condition α−β = 3 then this action provides the Fierz-

Pauli term in the broken symmetry state. In the unbroken phase with HA
B = 0 the above

action reduces to the action with only a cosmological constant Λ = −1

2
m2β. Thus, taking
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α = 3 and β = 0 we obtain that the cosmological constant is zero in broken as well as in

unbroken phase and hence Minkowski space-time is the solution of Einstein equations in

both cases. Another interesting choice of parameters is α = 2 and β = −1, corresponding

to a positive cosmological constant of order m2 in the unbroken phase. In this case, either

the graviton has mass m in broken symmetry phase, or has a vanishing mass (in unbroken

phase) with a cosmological constant of order m2. Let us take m ∼ H0, where H0 is the

value of the Hubble constant today. Then we obtain that the theory under consideration

inevitably leads either to modification of gravity on Vainstein scale, which is H−1

0
, or to

the presence of a cosmological constant of order H2
0
. This opens an interesting possibility

for interpretation of dark energy in the universe.

Finally we would like to know what is happening in the limit m2 → 0. Let us take for

definiteness action (3). Redefining the fields, HA
B → ĤA

B =
√

mHA
B , and taking the limit

m2 → 0, then action (3) reduces to

− 1

2

∫

d4x
√−gR +

3

2

∫

d4x
√−g

(

1

4
Ĥ

)4

. (16)

The broken symmetry phase with Ĥ = 4 corresponds to a huge negative cosmological con-

stant of the order of Planck value. Therefore it is clear that the only solution is Minkowski

space with Ĥ = 0 and massless graviton.
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