411 research outputs found

    High redshift evolution of optically and IR-selected galaxies: a comparison with CDM scenarios

    Get PDF
    A combination of ground-based (NTT and VLT) and HST (HDF-N and HDF-S) public imaging surveys have been used to collect a sample of 1712 I-selected and 319 K21K\leq 21 galaxies. Photometric redshifts have been obtained for all these galaxies. The results have been compared with the prediction of an analytic rendition of the current CDM hierarchical models for galaxy formation. We focus in particular on two observed quantities: the galaxy redshift distribution at K<21 and the evolution of the UV luminosity density. The derived photometric redshift distribution is in agreement with the hierarchical CDM prediction, with a fraction of only 5% of galaxies detected at z>2. This result strongly supports hierarchical scenarios where present-day massive galaxies are the result of merging processes. The observed UV luminosity density in the I-selected sample is confined within a factor of 4 over the whole range 0<z<4.5. CDM models in a critical Universe are not able to produce the density of UV photons that is observed at z>3. CDM models in Λ\Lambda-dominated universe are in better agreement at 3<z<4.5, but predict a pronounced peak at z~1.5 and a drop by a factor of 8 from z=1.5 to z=4 that is not observed in the data. We conclude that improvements are required in the treatment of the physical processes directly related to the SFR, e.g. the starbust activity in merger processes and/or different feedback to the star formation activity.Comment: Figures 2 and 3 modified to match the published versio

    Constraining the Lyα escape fraction with far-infrared observations of Lyα emitters

    Get PDF
    We study the far-infrared properties of 498 Lyα emitters (LAEs) at z = 2.8, 3.1, and 4.5 in the Extended Chandra Deep Field-South, using 250, 350, and 500μm data from the Herschel Multi-tiered Extragalactic Survey and 870μm data from the LABOCA ECDFS Submillimeter Survey. None of the 126, 280, or 92 LAEs at z = 2.8, 3.1, and 4.5, respectively, are individually detected in the far-infrared data. We use stacking to probe the average emission to deeper flux limits, reaching 1σ depths of ∼0.1 to 0.4 mJy. The LAEs are also undetected at ?3σ in the stacks, although a 2.5σ signal is observed at 870μm for the z = 2.8 sources. We consider a wide range of far-infrared spectral energy distributions (SEDs), including an M82 and an Sd galaxy template, to determine upper limits on the far-infrared luminosities and far-infrared-derived star formation rates of the LAEs. These star formation rates are then combined with those inferred from the Lyα and UV emission to determine lower limits on the LAEs’ Lyα escape fraction (f esc (Lyα)). For the Sd SED template, the inferred LAEs f esc (Lyα) are ?30% (1σ) at z = 2.8, 3.1, and 4.5, which are all significantly higher than the global f esc (Lyα) at these redshifts. Thus, if the LAEs f esc (Lyα) follows the global evolution, then they have warmer far-infrared SEDs than the Sd galaxy template. The average and M82 SEDs produce lower limits on the LAE f esc (Lyα) of ∼10%–20% (1σ), all of which are slightly higher than the global evolution of f esc (Lyα), but consistent with it at the 2σ–3σ level

    Resolving the extragalactic hard X-ray background

    Full text link
    The origin of the hard (2-10 keV) X-ray background has remained mysterious for over 35 years. Most of the soft (0.5-2 keV) X-ray background has been resolved into discrete sources, which are primarily quasars; however, these sources do not have the flat spectral shape required to match the X-ray background spectrum. Here we report the results of an X-ray survey 30 times more sensitive than previous studies in the hard band and four times more sensitive in the soft band. The sources detected in our survey account for at least 75 per cent of the hard X-ray background. The mean X-ray spectrum of these sources is in good agreement with that of the background. The X-ray emission from the majority of the detected sources is unambiguously associated with either the nuclei of otherwise normal bright galaxies or optically faint sources, which could either be active nuclei of dust enshrouded galaxies or the first quasars at very high redshifts.Comment: Nature article in pres

    Controlling passively-quenched single photon detectors by bright light

    Get PDF
    Single photon detectors based on passively-quenched avalanche photodiodes can be temporarily blinded by relatively bright light, of intensity less than a nanowatt. I describe a bright-light regime suitable for attacking a quantum key distribution system containing such detectors. In this regime, all single photon detectors in the receiver Bob are uniformly blinded by continuous illumination coming from the eavesdropper Eve. When Eve needs a certain detector in Bob to produce a click, she modifies polarization (or other parameter used to encode quantum states) of the light she sends to Bob such that the target detector stops receiving light while the other detector(s) continue to be illuminated. The target detector regains single photon sensitivity and, when Eve modifies the polarization again, produces a single click. Thus, Eve has full control of Bob and can do a successful intercept-resend attack. To check the feasibility of the attack, 3 different models of passively-quenched detectors have been tested. In the experiment, I have simulated the intensity diagrams the detectors would receive in a real quantum key distribution system under attack. Control parameters and side effects are considered. It appears that the attack could be practically possible.Comment: Experimental results from a third detector model added. Minor corrections and edits made. 11 pages, 10 figure

    Scale-invariance of galaxy clustering

    Full text link
    Some years ago we proposed a new approach to the analysis of galaxy and cluster correlations based on the concepts and methods of modern statistical Physics. This led to the surprising result that galaxy correlations are fractal and not homogeneous up to the limits of the available catalogs. The usual statistical methods, which are based on the assumption of homogeneity, are therefore inconsistent for all the length scales probed so far, and a new, more general, conceptual framework is necessary to identifythe real physical properties of these structures. In the last few years the 3-d catalogs have been significatively improved and we have extended our methods to the analysis of number counts and angular catalogs. This has led to a complete analysis of all the available data that we present in this review. The result is that galaxy structures are highly irregular and self-similar: all the available data are consistent with each other and show fractal correlations (with dimension D2D \simeq 2) up to the deepest scales probed so far (1000 \hmp) and even more as indicated from the new interpretation of the number counts. The evidence for scale-invariance of galaxy clustering is very strong up to 150 \hmp due to the statistical robustness of the data but becomes progressively weaker (statistically) at larger distances due to the limited data. In These facts lead to fascinating conceptual implications about our knowledge of the universe and to a new scenario for the theoretical challenge in this field.Comment: Latex file 165 pages, 106 postscript figures. This paper is also available at http://www.phys.uniroma1.it/DOCS/PIL/pil.html To appear in Physics Report (Dec. 1997

    Rupture by damage accumulation in rocks

    Get PDF
    The deformation of rocks is associated with microcracks nucleation and propagation, i.e. damage. The accumulation of damage and its spatial localization lead to the creation of a macroscale discontinuity, so-called "fault" in geological terms, and to the failure of the material, i.e. a dramatic decrease of the mechanical properties as strength and modulus. The damage process can be studied both statically by direct observation of thin sections and dynamically by recording acoustic waves emitted by crack propagation (acoustic emission). Here we first review such observations concerning geological objects over scales ranging from the laboratory sample scale (dm) to seismically active faults (km), including cliffs and rock masses (Dm, hm). These observations reveal complex patterns in both space (fractal properties of damage structures as roughness and gouge), time (clustering, particular trends when the failure approaches) and energy domains (power-law distributions of energy release bursts). We use a numerical model based on progressive damage within an elastic interaction framework which allows us to simulate these observations. This study shows that the failure in rocks can be the result of damage accumulation

    The HI content of the Eridanus group of galaxies

    Full text link
    The HI content of galaxies in the Eridanus group is studied using the GMRT observations and the HIPASS data. A significant HI deficiency up to a factor of 2-3 is observed in galaxies in the high galaxy density regions. The HI deficiency in galaxies is observed to be directly correlated with the local projected galaxy density, and inversely correlated with the line-of-sight radial velocity. Furthermore, galaxies with larger optical diameters are predominantly in the lower galaxy density regions. It is suggested that the HI deficiency in Eridanus is due to tidal interactions. In some galaxies, evidences of tidal interactions are seen. An important implication is that significant evolution of galaxies can take place in the group environment. In the hierarchical way of formation of clusters via mergers of groups, a fraction of the observed HI deficiency in clusters could have originated in groups. The co-existence of S0's and severely HI deficient galaxies in the Eridanus group suggests that galaxy harassment is likely to be an effective mechanism for transforming spirals to S0's.Comment: 21 pages; Accepted for publication in Journal of Astroph. & Astron. March, 200

    An HST Study of the Supernovae Accompanying GRB 040924 and GRB 041006

    Full text link
    We present the results from a {\it Hubble Space Telescope/ACS} study of the supernovae associated with gamma-ray bursts 040924 (z=0.86z=0.86) and 041006 (z=0.71z=0.71). We find evidence that both GRBs were associated with a SN 1998bw-like supernova dimmed by 1.5\sim 1.5 and 0.3\sim 0.3 magnitudes, respectively, making GRB 040924 the faintest GRB-associated SN ever detected. We study the luminosity dispersion in GRB/XRF-associated SNe and compare to local Type Ibc supernovae from the literature. We find significant overlap between the two samples, suggesting that GRB/XRF-associated SNe are not necessarily more luminous nor produce more 56^{56}Ni than local SNe. Based on the current (limited) datasets, we find that the two samples may share a similar 56^{56}Ni production mechanism.Comment: ApJ accepted (in press). Revised version. High-resolution figures available at http://www.astro.caltech.edu/~ams/GRB-SNe.htm

    Finite size effects on the galaxy number counts: evidence for fractal behavior up to the deepest scale

    Full text link
    We introduce and study two new concepts which are essential for the quantitative analysis of the statistical quality of the available galaxy samples. These are the dilution effect and the small scale fluctuations. We show that the various data that are considered as pointing to a homogenous distribution are all affected by these spurious effects and their interpretation should be completely changed. In particular, we show that finite size effects strongly affect the determination of the galaxy number counts, namely the number versus magnitude relation (N(<m)N(<m)) as computed from the origin. When one computes N(<m)N(<m) averaged over all the points of a redshift survey one observes an exponent α=D/50.4\alpha = D/5 \approx 0.4 compatible with the fractal dimension D2D \approx 2 derived from the full correlation analysis. Instead the observation of an exponent α0.6\alpha \approx 0.6 at relatively small scales, where the distribution is certainly not homogeneous, is shown to be related to finite size effects. We conclude therefore that the observed counts correspond to a fractal distribution with dimension D2D \approx 2 in the entire range 12 \ltapprox m \ltapprox 28, that is to say the largest scales ever probed for luminous matter. In addition our results permit to clarify various problems of the angular catalogs, and to show their compatibility with the fractal behavior. We consider also the distribution of Radio-galaxies, Quasars and γ\gamma ray burst, and we show their compatibility with a fractal structure with D1.6÷1.8D \approx 1.6 \div 1.8. Finally we have established a quantitative criterion that allows us to define and {\em predict} the statistical validity of a galaxy catalog (angular or three dimensional).Comment: 42 Latex pages. Figures and macro are avaialable under request at [email protected]

    Large scale outflows from z ~ 0.7 starburst galaxies identified via ultra-strong MgII quasar absorption lines

    Full text link
    (Abridged) Star formation-driven outflows are a critical phenomenon in theoretical treatments of galaxy evolution, despite the limited ability of observations to trace them across cosmological timescales. If the strongest MgII absorption-line systems detected in the spectra of background quasars arise in such outflows, "ultra-strong" MgII (USMgII) absorbers would identify significant numbers of galactic winds over a huge baseline in cosmic time, in a manner independent of the luminous properties of the galaxy. To this end, we present the first detailed imaging and spectroscopic study of the fields of two USMgII absorber systems culled from a statistical absorber catalog, with the goal of understanding the physical processes leading to the large velocity spreads that define such systems. Each field contains two bright emission-line galaxies at similar redshift (dv < 300 km/s) to that of the absorption. Lower-limits on their instantaneous star formation rates (SFR) from the observed OII and Hb line fluxes, and stellar masses from spectral template fitting indicate specific SFRs among the highest for their masses at z~0.7. Additionally, their 4000A break and Balmer absorption strengths imply they have undergone recent (~0.01 - 1 Gyr) starbursts. The concomitant presence of two rare phenomena - starbursts and USMgII absorbers - strongly implies a causal connection. We consider these data and USMgII absorbers in general in the context of various popular models, and conclude that galactic outflows are generally necessary to account for the velocity extent of the absorption. We favour starburst driven outflows over tidally-stripped gas from a major interaction which triggered the starburst as the energy source for the majority of systems. Finally, we discuss the implications of these results and speculate on the overall contribution of such systems to the global SFR density at z~0.7.Comment: 15 pages, 6 figure, accepted for publication by MNRA
    corecore