206 research outputs found

    Decoherence of Atomic Gases in Largely Detuned Laser Fields

    Get PDF
    We study theoretically the decoherence of a gas of bosonic atoms induced by the interaction with a largely detuned laser beam. It is shown that for a standing laser beam decoherence coincides with the single-particle result. For a running laser beam many-particle effects lead to significant modifications.Comment: 5 pages, 2 Figures, RevTe

    The diagonalization method in quantum recursion theory

    Full text link
    As quantum parallelism allows the effective co-representation of classical mutually exclusive states, the diagonalization method of classical recursion theory has to be modified. Quantum diagonalization involves unitary operators whose eigenvalues are different from one.Comment: 15 pages, completely rewritte

    Bacterial dimethylsulfoniopropionate degradation genes in the oligotrophic North Pacific subtropical gyre

    Get PDF
    Dimethylsulfoniopropionate (DMSP) is an organic sulfur compound that is rapidly metabolized by marine bacteria either by cleavage to dimethylsulfide (DMS) or demethylation to 3-methiolpropionate. The abundance and diversity of genes encoding bacterial DMS production (dddP) and demethylation (dmdA) were measured in the North Pacific subtropical gyre (NPSG) between May 2008 and February 2009 at Station ALOHA (22°45=N, 158°00=W) at two depths: 25mand the deep chlorophyll maximum (DCM;~100 m). The highest abundance of dmdA genes was in May 2008 at 25 m, with~16.5% of cells harboring a gene in one of the eight subclades surveyed, while the highest abundance of dddP genes was in July 2008 at 25 m, with~2% of cells harboring a gene. The dmdA gene pool was consistently dominated by homologs from SAR11 subclades, which was supported by findings in metagenomic data sets derived from Station ALOHA. Expression of the SAR11 dmdA genes was low, with typical transcript:gene ratios between 1:350 and 1:1,400. The abundance of DMSP genes was statistically different between 25mand the DCM and correlated with a number of environmental variables, including primary production, photosynthetically active radiation, particulate DMSP, and DMS concentrations. At 25 m, dddP abundance was positively correlated with pigments that are diagnostic of diatoms; at the DCM, dmdA abundance was positively correlated with temperature. Based on gene abundance, we hypothesize that SAR11 bacterioplankton dominate DMSP cycling in the oligotrophic NPSG, with lesser but consistent involvement of other members of the bacterioplankton community

    Characterization of Open-Cell Sponges via Magnetic Resonance and X-ray Tomography

    Get PDF
    The applications of polymeric sponges are varied, ranging from cleaning and filtration to medical applications. The specific properties of polymeric foams, such as pore size and connectivity, are dependent on their constituent materials and production methods. Nuclear magnetic resonance imaging (MRI) and X-ray micro-computed tomography (mu CT) offer complementary information about the structure and properties of porous media. In this study, we employed MRI, in combination with mu CT, to characterize the structure of polymeric open-cell foam, and to determine how it changes upon compression, mu CT was used to identify the morphology of the pores within sponge plugs, extracted from polyurethane open-cell sponges. MRI T-2 relaxation maps and bulk T-2 relaxation times measurements were performed for 7 degrees dH water contained within the same polyurethane foams used for mu CT. Magnetic resonance and mu CT measurements were conducted on both uncompressed and 60% compressed sponge plugs. Compression was achieved using a graduated sample holder with plunger. A relationship between the average T-2 relaxation time and maximum opening was observed, where smaller maximum openings were found to have a shorter T-2 relaxation times. It was also found that upon compression, the average maximum opening of pores decreased. Average pore size ranges of 375-632 +/- 1 mu m, for uncompressed plugs, and 301-473 +/- 1 mu m, for compressed plugs, were observed. By determining maximum opening values and T-2 relaxation times, it was observed that the pore structure varies between sponges within the same production batch, as well as even with a single sponge

    Exact solution of the six-vertex model with domain wall boundary condition. Critical line between ferroelectric and disordered phases

    Full text link
    This is a continuation of the papers [4] of Bleher and Fokin and [5] of Bleher and Liechty, in which the large nn asymptotics is obtained for the partition function ZnZ_n of the six-vertex model with domain wall boundary conditions in the disordered and ferroelectric phases, respectively. In the present paper we obtain the large nn asymptotics of ZnZ_n on the critical line between these two phases.Comment: 22 pages, 6 figures, to appear in the Journal of Statistical Physic

    Comparing the efficacy, safety, and utility of intensive insulin algorithms for a primary care practice

    Get PDF
    Diabetes management is firmly based within the primary care community. Landmark randomized, controlled trials have demonstrated that even modest reductions in glycated hemoglobin (HbA1c) can yield improvements in economic and medical end-points. Diabetes is a chronic, progressive disease associated with loss of pancreatic β-cell function. Therefore, most patients will eventually require insulin therapies in order to achieve their individualized targeted HbA1c as their β-cell function and mass wanes. Although clinicians understand the importance of early insulin initiation, there is little agreement as to when to introduce insulin as a therapeutic option. Once initiated, questions remain as to whether to allow the patients to self-titrate their dose or whether the dosing should be tightly regulated by the clinician. Physicians have many evidence-based basal insulin protocols from which to choose, all of which have been shown to drive HbA1c levels to the American Diabetes Association target of ≤7%. This article will discuss ways by which insulin therapies can be effectively introduced to patients within busy primary care practices. Published evidence-based basal insulin protocols will be evaluated for safety and efficacy

    VERTIGO (VERtical Transport In the Global Ocean) : a study of particle sources and flux attenuation in the North Pacific

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 1522-1539, doi:10.1016/j.dsr2.2008.04.024.The VERtical Transport In the Global Ocean (VERTIGO) study examined particle sources and fluxes through the ocean’s “twilight zone” (defined here as depths below the euphotic zone to 1000 m). Interdisciplinary process studies were conducted at contrasting sites off Hawaii (ALOHA) and in the NW Pacific (K2) during 3 week occupations in 2004 and 2005, respectively. We examine in this overview paper the contrasting physical, chemical and biological settings and how these conditions impact the source characteristics of the sinking material and the transport efficiency through the twilight zone. A major finding in VERTIGO is the considerably lower transfer efficiency (Teff) of particulate organic carbon (POC), POC flux 500 / 150 m, at ALOHA (20%) vs. K2 (50%). This efficiency is higher in the diatom-dominated setting at K2 where silica-rich particles dominate the flux at the end of a diatom bloom, and where zooplankton and their pellets are larger. At K2, the drawdown of macronutrients is used to assess export and suggests that shallow remineralization above our 150 m trap is significant, especially for N relative to Si. We explore here also surface export ratios (POC flux/primary production) and possible reasons why this ratio is higher at K2, especially during the first trap deployment. When we compare the 500 m fluxes to deep moored traps, both sites lose about half of the sinking POC by >4000 m, but this comparison is limited in that fluxes at depth may have both a local and distant component. Certainly, the greatest difference in particle flux attenuation is in the mesopelagic, and we highlight other VERTIGO papers that provide a more detailed examination of the particle sources, flux and processes that attenuate the flux of sinking particles. Ultimately, we contend that at least three types of processes need to be considered: heterotrophic degradation of sinking particles, zooplankton migration and surface feeding, and lateral sources of suspended and sinking materials. We have evidence that all of these processes impacted the net attenuation of particle flux vs. depth measured in VERTIGO and would therefore need to be considered and quantified in order to understand the magnitude and efficiency of the ocean’s biological pump.Funding for VERTIGO was provided primarily by research grants from the US National Science Foundation Programs in Chemical and Biological Oceanography (KOB, CHL, MWS, DKS, DAS). Additional US and non-US grants included: US Department of Energy, Office of Science, Biological and Environmental Research Program (JKBB); the Gordon and Betty Moore Foundation (DMK); the Australian Cooperative Research Centre program and Australian Antarctic Division (TWT); Chinese NSFC and MOST programs (NZJ); Research Foundation Flanders and Vrije Universiteit Brussel (FD, ME); JAMSTEC (MCH); New Zealand Public Good Science Foundation (PWB); and internal WHOI sources and a contribution from the John Aure and Cathryn Ann Hansen Buesseler Foundation (KOB)

    Application of non-HDL cholesterol for population-based cardiovascular risk stratification: results from the Multinational Cardiovascular Risk Consortium.

    Get PDF
    BACKGROUND: The relevance of blood lipid concentrations to long-term incidence of cardiovascular disease and the relevance of lipid-lowering therapy for cardiovascular disease outcomes is unclear. We investigated the cardiovascular disease risk associated with the full spectrum of bloodstream non-HDL cholesterol concentrations. We also created an easy-to-use tool to estimate the long-term probabilities for a cardiovascular disease event associated with non-HDL cholesterol and modelled its risk reduction by lipid-lowering treatment. METHODS: In this risk-evaluation and risk-modelling study, we used Multinational Cardiovascular Risk Consortium data from 19 countries across Europe, Australia, and North America. Individuals without prevalent cardiovascular disease at baseline and with robust available data on cardiovascular disease outcomes were included. The primary composite endpoint of atherosclerotic cardiovascular disease was defined as the occurrence of the coronary heart disease event or ischaemic stroke. Sex-specific multivariable analyses were computed using non-HDL cholesterol categories according to the European guideline thresholds, adjusted for age, sex, cohort, and classical modifiable cardiovascular risk factors. In a derivation and validation design, we created a tool to estimate the probabilities of a cardiovascular disease event by the age of 75 years, dependent on age, sex, and risk factors, and the associated modelled risk reduction, assuming a 50% reduction of non-HDL cholesterol. FINDINGS: Of the 524 444 individuals in the 44 cohorts in the Consortium database, we identified 398 846 individuals belonging to 38 cohorts (184 055 [48·7%] women; median age 51·0 years [IQR 40·7-59·7]). 199 415 individuals were included in the derivation cohort (91 786 [48·4%] women) and 199 431 (92 269 [49·1%] women) in the validation cohort. During a maximum follow-up of 43·6 years (median 13·5 years, IQR 7·0-20·1), 54 542 cardiovascular endpoints occurred. Incidence curve analyses showed progressively higher 30-year cardiovascular disease event-rates for increasing non-HDL cholesterol categories (from 7·7% for non-HDL cholesterol <2·6 mmol/L to 33·7% for ≥5·7 mmol/L in women and from 12·8% to 43·6% in men; p<0·0001). Multivariable adjusted Cox models with non-HDL cholesterol lower than 2·6 mmol/L as reference showed an increase in the association between non-HDL cholesterol concentration and cardiovascular disease for both sexes (from hazard ratio 1·1, 95% CI 1·0-1·3 for non-HDL cholesterol 2·6 to <3·7 mmol/L to 1·9, 1·6-2·2 for ≥5·7 mmol/L in women and from 1·1, 1·0-1·3 to 2·3, 2·0-2·5 in men). The derived tool allowed the estimation of cardiovascular disease event probabilities specific for non-HDL cholesterol with high comparability between the derivation and validation cohorts as reflected by smooth calibration curves analyses and a root mean square error lower than 1% for the estimated probabilities of cardiovascular disease. A 50% reduction of non-HDL cholesterol concentrations was associated with reduced risk of a cardiovascular disease event by the age of 75 years, and this risk reduction was greater the earlier cholesterol concentrations were reduced. INTERPRETATION: Non-HDL cholesterol concentrations in blood are strongly associated with long-term risk of atherosclerotic cardiovascular disease. We provide a simple tool for individual long-term risk assessment and the potential benefit of early lipid-lowering intervention. These data could be useful for physician-patient communication about primary prevention strategies. FUNDING: EU Framework Programme, UK Medical Research Council, and German Centre for Cardiovascular Research

    Very-high energy gamma-ray astronomy: A 23-year success story in high-energy astroparticle physics

    Full text link
    Very-high energy (VHE) gamma quanta contribute only a minuscule fraction - below one per million - to the flux of cosmic rays. Nevertheless, being neutral particles they are currently the best "messengers" of processes from the relativistic/ultra-relativistic Universe because they can be extrapolated back to their origin. The window of VHE gamma rays was opened only in 1989 by the Whipple collaboration, reporting the observation of TeV gamma rays from the Crab nebula. After a slow start, this new field of research is now rapidly expanding with the discovery of more than 150 VHE gamma-ray emitting sources. Progress is intimately related with the steady improvement of detectors and rapidly increasing computing power. We give an overview of the early attempts before and around 1989 and the progress after the pioneering work of the Whipple collaboration. The main focus of this article is on the development of experimental techniques for Earth-bound gamma-ray detectors; consequently, more emphasis is given to those experiments that made an initial breakthrough rather than to the successors which often had and have a similar (sometimes even higher) scientific output as the pioneering experiments. The considered energy threshold is about 30 GeV. At lower energies, observations can presently only be performed with balloon or satellite-borne detectors. Irrespective of the stormy experimental progress, the success story could not have been called a success story without a broad scientific output. Therefore we conclude this article with a summary of the scientific rationales and main results achieved over the last two decades.Comment: 45 pages, 38 figures, review prepared for EPJ-H special issue "Cosmic rays, gamma rays and neutrinos: A survey of 100 years of research

    Marine pelagic ecosystems: the West Antarctic Peninsula

    Get PDF
    The marine ecosystem of the West Antarctic Peninsula (WAP) extends from the Bellingshausen Sea to the northern tip of the peninsula and from the mostly glaciated coast across the continental shelf to the shelf break in the west. The glacially sculpted coastline along the peninsula is highly convoluted and characterized by deep embayments that are often interconnected by channels that facilitate transport of heat and nutrients into the shelf domain. The ecosystem is divided into three subregions, the continental slope, shelf and coastal regions, each with unique ocean dynamics, water mass and biological distributions. The WAP shelf lies within the Antarctic Sea Ice Zone (SIZ) and like other SIZs, the WAP system is very productive, supporting large stocks of marine mammals, birds and the Antarctic krill, Euphausia superba. Ecosystem dynamics is dominated by the seasonal and interannual variation in sea ice extent and retreat. The Antarctic Peninsula is one among the most rapidly warming regions on Earth, having experienced a 28C increase in the annual mean temperature and a 68C rise in the mean winter temperature since 1950. Delivery of heat from the Antarctic Circumpolar Current has increased significantly in the past decade, sufficient to drive to a 0.68C warming of the upper 300 m of shelf water. In the past 50 years and continuing in the twenty-first century, the warm, moist maritime climate of the northern WAP has been migrating south, displacing the once dominant cold, dry continental Antarctic climate and causing multi-level responses in the marine ecosystem. Ecosystem responses to the regional warming include increased heat transport, decreased sea ice extent and duration, local declines in icedependent Ade´lie penguins, increase in ice-tolerant gentoo and chinstrap penguins, alterations in phytoplankton and zooplankton community composition and changes in krill recruitment, abundance and availability to predators. The climate/ecological gradients extending along theWAPand the presence of monitoring systems, field stations and long-term research programmes make the region an invaluable observatory of climate change and marine ecosystem response
    corecore