81 research outputs found

    An investigation of plate-type windborne debris flight using coupled CFD–RBD models. Part I: Model development and validation

    Get PDF
    AbstractThe development of a coupled computational fluid-dynamics rigid body (CFD–RBD) model is presented. The RBD model deploys rotational quaternions, which are free from the gimbal lock that is associated with Euler rotational matrix. The quaternion model means that the complex 3D spinning flight modes associated with the flight of plate-type windborne debris can be modelled robustly. This paper attempts to determine the accuracy of the CFD–RBD model by comparing the predicted trajectories from a large number of debris simulations with experimentally derived equations of best fit. Agreement is found to be good and, based on the findings, an alternative form for the dimensionless flight distance is presented, which extends the range of the experimental study to longer flight times.The predictions from the CFD–RBD model are then compared against two quasi-steady analytical debris flight models. The second model is based on modified force and moment coefficients, which are informed by the findings from the CFD–RBD model. For plates that have attained a stable, autorotational flight mode, the CFD–RBD and analytical models are in good agreement. Their predictions differ during the initial stages of flight, where the complex non-linear interactions between the plate and its wake are not captured by the analytical models

    Reconciling Gaussian plume and Computational Fluid Dynamics models of particulate dispersion

    Get PDF
    Computational Fluid Dynamics (CFD) is increasingly used to model particulate dispersion in situations where Gaussian Dispersion models are inappropriate or inaccurate. However, there is evidence which indicates that many CFD models under-predict lateral plume spread. This paper aims to address this by imple- menting a strategy which incorporates wind direction variability into CFD models using a formulation which is also used in the UK-ADMS plume spread module. In the present work, a series of CFD simulations are run at various wind angles. The outputs from these simulations are weighted using a Gaussian probability density function and combined to produce a plume. The standard k−Δ model has been employed to solve the RANS equations of the flow field for stable, neutral and unstable atmospheric stabilities, coupled with the Lagrangian Particle tracking model to model dispersion. By comparing the CFD accretion profiles to UK-ADMS dry deposition results, it is observed that the proposed modelling methodology produces lateral spreading of the plume which is comparable to that obtained using UK-ADMS. However, the Lagrangian integral time scale constant, c L , which governs the influence turbulence has on the dispersion, must also be modified to bring absolute values of accretion rates in line with those observed in UK-ADMS

    A computational study of particulate emissions from Old Moor Quarry, UK

    Get PDF
    This paper presents an evaluation of a buoyancy-modified k--e dust dispersion model for predicting fugitive dust deposition from a surface quarry. The dust clouds are modelled as volumetric emissions and their dispersion simulated by coupling the flow-field with stochastic tracking of the particulates. The coefficients of the turbulence model are modified and source terms are added to the turbulence equations to permit simulation of both adiabatic and diabatic atmospheric stability conditions. These modifications ensure compatibility with Monin-Obukhuv similarity scaling of the atmospheric surface layer. Also, mesoscale wind direction variability is included. The Monin-Obukhuv scaling parameters have been derived from routine meteorological data recorded during a month-long monitoring campaign conducted at the quarry. Dust deposition measurements from a network of Frisbee deposition gauges are used to validate the predictions of the CFD model. A number of statistical performance metrics have been applied to evaluate the degree of uncertainty in the predictions. The dust deposition predictions of the CFD model are compared to those of the UK-ADMS, to demonstrate how the treatment of the terrain in the CFD model improves the accuracy of the deposition predictions

    The computational fluid dynamics modelling of the autorotation of square, flat plates

    Get PDF
    This paper examines the use of a coupled Computational Fluid Dynamics (CFD) – Rigid Body Dynamics (RBD) model to study the fixed-axis autorotation of a square flat plate. The calibration of the model against existing wind tunnel data is described. During the calibration, the CFD models were able to identify complex period autoration rates, which were attributable to a mass eccentricity in the experimental plate. The predicted flow fields around the autorotating plates are found to be consistent with existing observations. In addition, the pressure coefficients from the wind tunnel and computational work were found to be in good agreement. By comparing these pressure distributions and the vortex shedding patterns at various stages through an autorotation cycle, it was possible to gain important insights into the flow structures that evolve around the plate. The CFD model is also compared against existing correlation functions that relate the mean tip speed ratio of the plate to the aspect ratio, thickness ratio and mass moment of inertia of the plate. Agreement is found to be good for aspect ratios of 1, but poor away from this value. However, other aspects of the numerical modelling are consistent with the correlations

    Improving the rheometry of rubberized bitumen: experimental and computation fluid dynamics studies

    Get PDF
    Multi-phase materials are common in several fields of engineering and rheological measurements are intensively adopted for their development and quality control. Unfortunately, due to the complexity of these materials, accurate measurements can be challenging. This is the case of bitumen-rubber blends used in civil engineering as binders for several applications such as asphalt concrete for road pavements but recently also for roofing membranes. These materials can be considered as heterogeneous blends of fluid and particles with different densities. Due to this nature the two components tends to separate and this phenomenon can be enhanced with inappropriate design and mixing. This is the reason behind the need of efficient dispersion and distribution during their manufacturing and it also explains while realtime viscosity measurements could provide misleading results. To overcome this problem, in a previous research effort, a Dual Helical Impeller (DHI) for a Brookfield viscometer was specifically designed, calibrated and manufactured. The DHI showed to provide a more stable trend of measurements and these were identified as being ‘‘more realistic” when compared with those obtained with standard concentric cylinder testing geometries, over a wide range of viscosities. However, a fundamental understanding of the reasons behind this improvement is lacking and this paper aims at filling these gaps. Hence, in this study a tailored experimental programme resembling the bitumen-rubber system together with a bespoke Computational Fluid Dynamics (CFD) model are used to provide insights into DHI applicability to perform viscosity measurements with multiphase fluids as well as to validate its empirical calibration procedure. A qualitative comparison between the laboratory results and CFD simulations proved encouraging and this was enhanced with quantitative estimations of the mixing efficiency of both systems. The results proved that CFD model is capable of simulating these systems and the obtained simulations gave insights into the flow fields created by the DHI. It is now clear that DHI uses its inner screw to create a vertical dragging of particles within a fluid of lower density, while the outer screw transports the suspended particles down. This induced flow helps keeping the test sample less heterogeneous and this in turns allows recording more stable viscosity measurements

    Bridge deck flutter derivatives: efficient numerical evaluation exploiting their interdependence

    Get PDF
    Increasing the efficiency in the process to numerically compute the flutter derivatives of bridge deck sections is desirable to advance the application of CFD based aerodynamic design in industrial projects. In this article, a 2D unsteady Reynolds-averaged Navier-Stokes (URANS) approach adopting MenterŚłs SST k-ω turbulence model is employed for computing the flutter derivatives and the static aerodynamic characteristics of two well known examples: a rectangular cylinder showing a completely reattached flow and the generic G1 section representative of streamlined deck sections. The analytical relationships between flutter derivatives reported in the literature are applied with the purpose of halving the number of required numerical simulations for computing the flutter derivatives. The solver of choice has been the open source code OpenFOAM. It has been found that the proposed methodology offers results which agree well with the experimental data and the accuracy of the estimated flutter derivatives is similar to the results reported in the literature where the complete set of numerical simulations has been performed for both heave and pitch degrees of freedom

    A bright, high rotation-measure FRB that skewers the M33 halo

    Get PDF
    We report the detection of a bright fast radio burst, FRB\,191108, with Apertif on the Westerbork Synthesis Radio Telescope (WSRT). The interferometer allows us to localise the FRB to a narrow 5\arcsec\times7\arcmin ellipse by employing both multibeam information within the Apertif phased-array feed (PAF) beam pattern, and across different tied-array beams. The resulting sight line passes close to Local Group galaxy M33, with an impact parameter of only 18\,kpc with respect to the core. It also traverses the much larger circumgalactic medium of M31, the Andromeda Galaxy. We find that the shared plasma of the Local Group galaxies could contribute ∌\sim10\% of its dispersion measure of 588\,pc\,cm−3^{-3}. FRB\,191108 has a Faraday rotation measure of +474\,± 3\pm\,3\,rad\,m−2^{-2}, which is too large to be explained by either the Milky Way or the intergalactic medium. Based on the more moderate RMs of other extragalactic sources that traverse the halo of M33, we conclude that the dense magnetised plasma resides in the host galaxy. The FRB exhibits frequency structure on two scales, one that is consistent with quenched Galactic scintillation and broader spectral structure with ΔΜ≈40\Delta\nu\approx40\,MHz. If the latter is due to scattering in the shared M33/M31 CGM, our results constrain the Local Group plasma environment. We found no accompanying persistent radio sources in the Apertif imaging survey data
    • 

    corecore