107 research outputs found

    Bending Analysis of Functionally Graded Plates in the Context of Different Theories of Thermoelasticity

    Get PDF
    The quasistatic bending response is presented for a simply supported functionally graded rectangular plate subjected to a through-the-thickness temperature field under the effect of various theories of generalized thermoelasticity, namely, classical dynamical coupled theory, Lord and Shulman's theory with one relaxation time, and Green and Lindsay's theory with two relaxation times. The generalized shear deformation theory obtained by the first author is used. Material properties of the plate are assumed to be graded in the thickness direction according to a simple exponential law distribution in terms of the volume fractions of the constituents. The numerical illustrations concern quasistatic bending response of functionally graded square plates with two constituent materials are studied using the different theories of generalized thermoelasticit

    Axiomatic/asymptotic evaluation of multilayered plate theories by using single and multi-points error criteria

    Get PDF
    AbstractThis paper deals with refined theories for multilayered composites plates. Layer-Wise (LW) and Equivalent Single Layer (ESL) theories are evaluated by means of axiomatic–asymptotic approach. Theories with forth order displacement fields in the thickness layer/plate direction z are implemented by referring to the Unified Formulation by Carrera. The effectiveness of each term of the made expansion is evaluated by comparing the related theories with a reference solution. As a result a reduced model is obtained which preserve the accuracy of the full-model (model that include the whole terms of the z-expansion) but it removes the not-significant terms in the same expansion (those terms that do no improve the results according to a given error criteria). Various single-point and multi-point error criteria have been analyzed and compared in order to establish such an effectiveness: error localized in an assigned point along z, error localized at each interface, error located at the z-value corresponding to the maximum value of the considered variables, etc. Applications are given in case of closed form solutions of orthotropic cross-ply, rectangular, simply supported plates loaded by bisinusoidal distribution of transverse pressure. Symmetrically and unsymmetrical laminated cases are considered along with sandwich plates. It is found the reduced model is strongly influenced by the used localized error and that in same case the reduced model which is obtained by of single point criteria can be very much improved by the use of multi-point criteria

    Magnetodielectric effect of Graphene-PVA Nanocomposites

    Full text link
    Graphene-Polyvinyl alcohol (PVA) nanocomposite films with thickness 120μm120 \mu m were synthesized by solidification of PVA in a solution with dispersed graphene nanosheets. Electrical conductivity data were explained as arising due to hopping of carriers between localized states formed at the graphene-PVA interface. Dielectric permittivity data as a function of frequency indicated the occurrence of Debye-type relaxation mechanism. The nanocomposites showed a magnetodielectric effect with the dielectric constant changing by 1.8% as the magnetic field was increased to 1 Tesla. The effect was explained as arising due to Maxwell-Wagner polarization as applied to an inhomogeneous two-dimensional,two-component composite model. This type of nanocomposite may be suitable for applications involving nanogenerators.Comment: 13 pages, 11 figure

    A non-catecholamine-producing sympathetic paraganglioma of the spermatic cord: the importance of performing candidate gene mutation analysis

    Get PDF
    textabstractBackground: Catecholamine-producing tumours are called pheochromocytomas when they are located in the adrenal gland and sympathetic paragangliomas when they are located elsewhere in the abdomen. Rarely these tumours do not produce catecholamines and even more rarely they arise in the spermatic cord. Over the past decade, systematic mutation analysis of apparently sporadic cases of pheochromocytomas and paragangliomas has elucidated the frequent presence of germ line mutations in one of five candidate genes, including RET, VHL, SDHB, SDHC, and SDHD. Clinical history and methods: We describe a 45-year-old man with a non catecholamine-producing paraganglioma of the spermatic cord. We performed SDHB immunohistochemistry and performed mutation analysis of the SDHB, SDHC, and SDHD genes. Results: There was no staining of tumour cells with SDHB immunohistochemistry, indicative of an SDH mutation. Mutation analysis demonstrated a germ line SDHD mutation (p.Val147Met). Conclusions: Systematic mutation analysis is required in paraganglioma patients for the detection of germ line mutations. This should be preceded by SDHB immunohistochemistry to limit the number of genes to be tested

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Use of axiomatic/asymptotic approach to evaluate various refined theories for sandwich shells

    No full text
    This paper evaluates refined theories for sandwich shells. Layer-wise and equivalent single-layer models (including zig-zag theories) are used with linear and higher order expansion in the thickness layer/shell direction for the displacement variables. So called asymptotic/axiomatic approach is employed to establish the effectiveness of each displacements terms for a given problems: that is the initial axiomatic expansion with all the terms related to the assigned order N is asymptotically reduced to a 'best' displacement models which has the same accuracy of the full model but with less terms. The various sandwich theories are conveniently formulated by using the unified formulation by Carrera (CUF) that leads to governing equations which forms are formally the same for the different sandwich shell theories. Accuracy of a given theory is established by fixing the sandwich shell in term of geometry, boundary conditions, layout of the face/core layers (including very soft-core cases) as well as by choosing a criteria to measure the errors. Two error criteria have been adopted which are related to a fixed point and to the maximum values of displacement/stress variables in the thickness shell direction. A number of problems have been treated and the related 'best' displacement model have been obtained. The effectiveness of the asymptotic/axiamotic problems is proved by comparing with available reference solutions. It has been found that the resulting reduced 'best' theories are very much subordinated to the considered problems. These changes by changing geometrically parameters as well as by adopting a different error criteria
    corecore