11,379 research outputs found

    Risk factors and mortality associated with multimorbidity in people with stroke or transient ischaemic attack: a study of 8,751 UK Biobank participants

    Get PDF
    Background: Multimorbidity is common in stroke, but the risk factors and effects on mortality remain poorly understood. Objective: To examine multimorbidity and its associations with sociodemographic/lifestyle risk factors and all-cause mortality in UK Biobank participants with stroke or transient ischaemic attack (TIA). Design: Data were obtained from an anonymized community cohort aged 40–72 years. Overall, 42 comorbidities were self-reported by those with stroke or TIA. Relative risk ratios demonstrated associations between participant characteristics and number of comorbidities. Hazard ratios demonstrated associations between the number and type of comorbidities and all-cause mortality. Results were adjusted for age, sex, socioeconomic status, smoking, and alcohol intake. Data were linked to national mortality data. Median follow-up was 7 years. Results: Of 8,751 participants (mean age 60.9±6.7 years) with stroke or TIA, the all-cause mortality rate over 7 years was 8.4%. Over 85% reported ≄1 comorbidities. Age, socioeconomic deprivation, smoking and less frequent alcohol intake were associated with higher levels of multimorbidity. Increasing multimorbidity was associated with higher all-cause mortality. Mortality risk was double for those with ≄5 comorbidities compared to those with none. Having cancer, coronary heart disease, diabetes, or chronic obstructive pulmonary disease significantly increased mortality risk. Presence of any cardiometabolic comorbidity significantly increased mortality risk, as did any non-cardiometabolic comorbidity. Conclusions: In stroke survivors, the number of comorbidities may be a more helpful predictor of mortality than type of condition. Stroke guidelines should take greater account of comorbidities, and interventions are needed that improve outcomes for people with multimorbidity and stroke

    A neuronal network model of interictal and recurrent ictal activity

    Get PDF
    We propose a neuronal network model which undergoes a saddle-node bifurcation on an invariant circle as the mechanism of the transition from the interictal to the ictal (seizure) state. In the vicinity of this transition, the model captures important dynamical features of both interictal and ictal states. We study the nature of interictal spikes and early warnings of the transition predicted by this model. We further demonstrate that recurrent seizures emerge due to the interaction between two networks.Comment: 9 pages, 7 figure

    Kinetically Inhibited Order in a Diamond-Lattice Antiferromagnet

    Full text link
    Frustrated magnetic systems exhibit highly degenerate ground states and strong fluctuations, often leading to new physics. An intriguing example of current interest is the antiferromagnet on a diamond lattice, realized physically in A-site spinel materials. This is a prototypical system in three dimensions where frustration arises from competing interactions rather than purely geometric constraints, and theory suggests the possibility of unusual magnetic order at low temperature. Here we present a comprehensive single-crystal neutron scattering study of CoAl2O4, a highly frustrated A-site spinel. We observe strong diffuse scattering that peaks at wavevectors associated with Neel ordering. Below the temperature T*=6.5 K, there is a dramatic change in the elastic scattering lineshape accompanied by the emergence of well-defined spin-wave excitations. T* had previously been associated with the onset of glassy behavior. Our new results suggest instead that T* signifies a first-order phase transition, but with true long-range order inhibited by the kinetic freezing of domain walls. This scenario might be expected to occur widely in frustrated systems containing first-order phase transitions and is a natural explanation for existing reports of anomalous glassy behavior in other materials.Comment: 40 pages, 9 figures, Introduction and discussion altered and expanded. Additional section and figure added to Supplementary Informatio

    Generating asymptotically plane wave spacetimes

    Get PDF
    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line.Comment: 23 pages, 1 eps figure; harvmac; v2:refs added; v3:minor comments adde

    X-ray diffraction measurements of Mo melting to 119 GPa and the high pressure phase diagram

    Get PDF
    In this paper, we report angle-dispersive X-ray diffraction data of molybdenum melting, measured in a double-sided laser-heated diamond-anvil cell up to a pressure of 119 GPa and temperatures up to 3400 K. The new melting temperatures are in excellent agreement with earlier measurements up to 90 GPa that relied on optical observations of melting and in strong contrast to most theoretical estimates. The X-ray measurements show that the solid melts from the bcc structure throughout the reported pressure range and provide no evidence for a high temperature transition from bcc to a close-packed structure, or to any other crystalline structure. This observation contradicts earlier interpretations of shock data arguing for such a transition. Instead, the values for the Poisson ratios of shock compressed Mo, obtained from the sound speed measurements, and the present X-ray evidence of loss of long-range order suggest that the 210 GPa ( ∌ 4100 K) transition in the shock experiment is from the bcc structure to a new, highly viscous, structured [email protected]

    A prominent relativistic iron line in the Seyfert 1 MCG-02-14-009

    Full text link
    I report the discovery of a prominent broad and asymmetrical feature near 6.4 keV in the Seyfert 1 MCG-02-14-009 (z=0.028) with XMM-Newton/EPIC. The present short X-ray observation (PN net exposure time ~5 ks) is the first one above 2 keV for MCG-02-14-009. The feature can be explained by either a relativistic iron line around either a Schwarzschild (non-rotating) or a Kerr (rotating) black hole. If the feature is a relativistic iron line around a Schwarzschild black hole, the line energy is 6.51 (+0.21,-0.12) keV with an equivalent width of 631 (+259,-243) eV and that the inclination angle of the accretion disc should be less than 43 degrees. A relativistically blurred photoionized disc model gives a very good spectral fit over the broad band 0.2-12keV energy range. The spectrum is reflection dominated and this would indicate that the primary source in MCG-02-14-009 is located very close to the black hole, where gravitational light bending effect is important (about 3-4 Rg), and that the black hole may rapidly rotate.Comment: Accepted for publication, A&A Letters, 5 pages, 3 figures, and 1 tabl

    Risk factors and mortality associated with multimorbidity in people with stroke or transient ischaemic attack: a study of 8,751 UK Biobank participants

    Get PDF
    Background: Multimorbidity is common in stroke, but the risk factors and effects on mortality remain poorly understood. Objective: To examine multimorbidity and its associations with sociodemographic/lifestyle risk factors and all-cause mortality in UK Biobank participants with stroke or transient ischaemic attack (TIA). Design: Data were obtained from an anonymized community cohort aged 40–72 years. Overall, 42 comorbidities were self-reported by those with stroke or TIA. Relative risk ratios demonstrated associations between participant characteristics and number of comorbidities. Hazard ratios demonstrated associations between the number and type of comorbidities and all-cause mortality. Results were adjusted for age, sex, socioeconomic status, smoking, and alcohol intake. Data were linked to national mortality data. Median follow-up was 7 years. Results: Of 8,751 participants (mean age 60.9±6.7 years) with stroke or TIA, the all-cause mortality rate over 7 years was 8.4%. Over 85% reported ≄1 comorbidities. Age, socioeconomic deprivation, smoking and less frequent alcohol intake were associated with higher levels of multimorbidity. Increasing multimorbidity was associated with higher all-cause mortality. Mortality risk was double for those with ≄5 comorbidities compared to those with none. Having cancer, coronary heart disease, diabetes, or chronic obstructive pulmonary disease significantly increased mortality risk. Presence of any cardiometabolic comorbidity significantly increased mortality risk, as did any non-cardiometabolic comorbidity. Conclusions: In stroke survivors, the number of comorbidities may be a more helpful predictor of mortality than type of condition. Stroke guidelines should take greater account of comorbidities, and interventions are needed that improve outcomes for people with multimorbidity and stroke

    Controlling Organization and Forces in Active Matter Through Optically-Defined Boundaries

    Get PDF
    Living systems are capable of locomotion, reconfiguration, and replication. To perform these tasks, cells spatiotemporally coordinate the interactions of force-generating, "active" molecules that create and manipulate non-equilibrium structures and force fields that span up to millimeter length scales [1-3]. Experimental active matter systems of biological or synthetic molecules are capable of spontaneously organizing into structures [4,5] and generating global flows [6-9]. However, these experimental systems lack the spatiotemporal control found in cells, limiting their utility for studying non-equilibrium phenomena and bioinspired engineering. Here, we uncover non-equilibrium phenomena and principles by optically controlling structures and fluid flow in an engineered system of active biomolecules. Our engineered system consists of purified microtubules and light-activatable motor proteins that crosslink and organize microtubules into distinct structures upon illumination. We develop basic operations, defined as sets of light patterns, to create, move, and merge microtubule structures. By composing these basic operations, we are able to create microtubule networks that span several hundred microns in length and contract at speeds up to an order of magnitude faster than the speed of an individual motor. We manipulate these contractile networks to generate and sculpt persistent fluid flows. The principles of boundary-mediated control we uncover may be used to study emergent cellular structures and forces and to develop programmable active matter devices

    The large-scale Quasar-Lyman \alpha\ Forest Cross-Correlation from BOSS

    Full text link
    We measure the large-scale cross-correlation of quasars with the Lyman \alpha\ forest absorption in redshift space, using ~ 60000 quasar spectra from Data Release 9 (DR9) of the Baryon Oscillation Spectroscopic Survey (BOSS). The cross-correlation is detected over a wide range of scales, up to comoving separations r of 80 Mpc/h. For r > 15 Mpc/h, we show that the cross-correlation is well fitted by the linear theory prediction for the mean overdensity around a quasar host halo in the standard \Lambda CDM model, with the redshift distortions indicative of gravitational evolution detected at high confidence. Using previous determinations of the Lyman \alpha\ forest bias factor obtained from the Lyman \alpha\ autocorrelation, we infer the quasar bias factor to be b_q = 3.64^+0.13_-0.15 at a mean redshift z=2.38, in agreement with previous measurements from the quasar auto-correlation. We also obtain a new estimate of the Lyman \alpha\ forest redshift distortion factor, \beta_F = 1.1 +/- 0.15, slightly larger than but consistent with the previous measurement from the Lyman \alpha\ forest autocorrelation. The simple linear model we use fails at separations r < 15 Mpc/h, and we show that this may reasonably be due to the enhanced ionization due to radiation from the quasars. We also provide the expected correction that the mass overdensity around the quasar implies for measurements of the ionizing radiation background from the line-of-sight proximity effect.Comment: 24 pages, 6 figures, published in JCA
    • 

    corecore