70 research outputs found

    Graphical models for interactive POMDPs: representations and solutions

    Get PDF
    We develop new graphical representations for the problem of sequential decision making in partially observable multiagent environments, as formalized by interactive partially observable Markov decision processes (I-POMDPs). The graphical models called interactive inf uence diagrams (I-IDs) and their dynamic counterparts, interactive dynamic inf uence diagrams (I-DIDs), seek to explicitly model the structure that is often present in real-world problems by decomposing the situation into chance and decision variables, and the dependencies between the variables. I-DIDs generalize DIDs, which may be viewed as graphical representations of POMDPs, to multiagent settings in the same way that IPOMDPs generalize POMDPs. I-DIDs may be used to compute the policy of an agent given its belief as the agent acts and observes in a setting that is populated by other interacting agents. Using several examples, we show how I-IDs and I-DIDs may be applied and demonstrate their usefulness. We also show how the models may be solved using the standard algorithms that are applicable to DIDs. Solving I-DIDs exactly involves knowing the solutions of possible models of the other agents. The space of models grows exponentially with the number of time steps. We present a method of solving I-DIDs approximately by limiting the number of other agents’ candidate models at each time step to a constant. We do this by clustering models that are likely to be behaviorally equivalent and selecting a representative set from the clusters. We discuss the error bound of the approximation technique and demonstrate its empirical performance

    Optimal control as a graphical model inference problem

    Get PDF
    We reformulate a class of non-linear stochastic optimal control problems introduced by Todorov (2007) as a Kullback-Leibler (KL) minimization problem. As a result, the optimal control computation reduces to an inference computation and approximate inference methods can be applied to efficiently compute approximate optimal controls. We show how this KL control theory contains the path integral control method as a special case. We provide an example of a block stacking task and a multi-agent cooperative game where we demonstrate how approximate inference can be successfully applied to instances that are too complex for exact computation. We discuss the relation of the KL control approach to other inference approaches to control.Comment: 26 pages, 12 Figures; Machine Learning Journal (2012

    Can bounded and self-interested agents be teammates? Application to planning in ad hoc teams

    Get PDF
    Planning for ad hoc teamwork is challenging because it involves agents collaborating without any prior coordination or communication. The focus is on principled methods for a single agent to cooperate with others. This motivates investigating the ad hoc teamwork problem in the context of self-interested decision-making frameworks. Agents engaged in individual decision making in multiagent settings face the task of having to reason about other agents’ actions, which may in turn involve reasoning about others. An established approximation that operationalizes this approach is to bound the infinite nesting from below by introducing level 0 models. For the purposes of this study, individual, self-interested decision making in multiagent settings is modeled using interactive dynamic influence diagrams (I-DID). These are graphical models with the benefit that they naturally offer a factored representation of the problem, allowing agents to ascribe dynamic models to others and reason about them. We demonstrate that an implication of bounded, finitely-nested reasoning by a self-interested agent is that we may not obtain optimal team solutions in cooperative settings, if it is part of a team. We address this limitation by including models at level 0 whose solutions involve reinforcement learning. We show how the learning is integrated into planning in the context of I-DIDs. This facilitates optimal teammate behavior, and we demonstrate its applicability to ad hoc teamwork on several problem domains and configurations

    Same data, different conclusions: Radical dispersion in empirical results when independent analysts operationalize and test the same hypothesis

    Get PDF
    In this crowdsourced initiative, independent analysts used the same dataset to test two hypotheses regarding the effects of scientists’ gender and professional status on verbosity during group meetings. Not only the analytic approach but also the operationalizations of key variables were left unconstrained and up to individual analysts. For instance, analysts could choose to operationalize status as job title, institutional ranking, citation counts, or some combination. To maximize transparency regarding the process by which analytic choices are made, the analysts used a platform we developed called DataExplained to justify both preferred and rejected analytic paths in real time. Analyses lacking sufficient detail, reproducible code, or with statistical errors were excluded, resulting in 29 analyses in the final sample. Researchers reported radically different analyses and dispersed empirical outcomes, in a number of cases obtaining significant effects in opposite directions for the same research question. A Boba multiverse analysis demonstrates that decisions about how to operationalize variables explain variability in outcomes above and beyond statistical choices (e.g., covariates). Subjective researcher decisions play a critical role in driving the reported empirical results, underscoring the need for open data, systematic robustness checks, and transparency regarding both analytic paths taken and not taken. Implications for organizations and leaders, whose decision making relies in part on scientific findings, consulting reports, and internal analyses by data scientists, are discussed

    Research results reported by OEO summer (1981) student employees of LLNL working with Earth Sciences (K) Division personnel

    No full text
    Significant experimental results were achieved in a number of research programs that were carried out during the summer of 1981 by students sponsored by the Office of Equal Opportunity at the Lawrence Livermore National Laboratory. These students were working with Earth Sciences (K) Division personnel. Accomplishments include the following: (1) preparation of post-burn stratigraphic sections for the Hoe Creek III experiment, Underground Coal Gasification project; (2) preparation of miscellaneous stratigraphic sections in the Climax granite near the Spent Fuel Test, Nevada Test Site, for the Waste Isolation Project; (3) confirmation of the applicability of a new theory relating to subsidence (solid matrix movement); (4) experimental confirmation that organic groundwater contaminants produced during an underground coal gasification experiment can be removed by appropriate bacterial treatment; (5) development of data supporting the extension of the Greenville Fault Zone into the Northern Diablo Range (Alameda and Santa Clara Counties, California); (6) completion of a literature review on hazardous waste (current disposal technology, regulations, research needs); (7) preparation of a map showing levels of background seismic noise in the USSR; (8) demonstration of a correlation of explosion size with the P-wave magnitude of the seismic signal produced by the explosion; and (9) reduction of data showing the extent of ground motion resulting from subsidence in the vicinity of the Hoe Creek III experiment, Underground Coal Gasification Project

    Knowledge-based formulation of dynamic decision models

    No full text
    corecore