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Abstract We develop new graphical representations for the problem of sequen-
tial decision making in partially observable multiagent environments, as formal-
ized by interactive partially observable Markov decision processes (I-POMDPs).
The graphical models called interactive inf uence diagrams (I-IDs) and their dy-
namic counterparts, interactive dynamic inf uence diagrams (I-DIDs), seek to ex-
plicitly model the structure that is often present in real-world problems by de-
composing the situation into chance and decision variables, and the dependencies
between the variables. I-DIDs generalize DIDs, which may be viewed as graph-
ical representations of POMDPs, to multiagent settings in the same way that I-
POMDPs generalize POMDPs. I-DIDs may be used to compute the policy of an
agent given its belief as the agent acts and observes in a setting that is populated by
other interacting agents. Using several examples, we show how I-IDs and I-DIDs
may be applied and demonstrate their usefulness. We also show how the models
may be solved using the standard algorithms that are applicable to DIDs.

Solving I-DIDs exactly involves knowing the solutions of possible models of
the other agents. The space of models grows exponentially with the number of time
steps. We present a method of solving I-DIDs approximately by limiting the num-
ber of other agents’ candidate models at each time step to a constant. We do this by
clustering models that are likely to be behaviorally equivalent and selecting a rep-
resentative set from the clusters. We discuss the error bound of the approximation
technique and demonstrate its empirical performance.

1 Introduction

Interactive partially observable Markov decision processes (I-POMDP) [14] pro-
vide a framework for sequential decision making in partially observablemultiagent
environments. They generalize POMDPs [19,34] to multiagent settings by includ-
ing other agents’ computable models in the state space along with the states of
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the physical environment. The models encompass all information inf uencing the
agents’ behaviors, including their preferences, capabilities, and beliefs, and are
thus analogous to types in Bayesian games as f rst envisioned by Harsanyi [17]. I-
POMDPs adopt a subjective approach to understanding strategic behavior, rooted
in a decision-theoretic framework that takes a decision-maker’s perspective in the
interaction.

Enumerative representations of models often obscure important structure that
is typically present in many realistic application settings. Graphical models, such
as inf uence diagrams (ID) [33,36] offer a qualitative language that decomposes
the state into chance (random) variables and dependencies between the variables.
Algorithms for solving the models exploit the conditional independence between
variables, and often consume less time and space in solving the problem compared
to those that operate on traditional enumerative representations. As a case in point,
factored representations of POMDPs (and MDPs) that utilize IDs often facilitate
fast solutions that exploit the structure (see [4,16] for examples). Graphical models
also allow a more explicit qualitative description of the decision-making situation
as compared to enumerative forms.

In order to provide a graphical representation for I-POMDPs and make the
structure explicit, Polich and Gmytrasiewicz [28] introduced a novel graphical
model, called interactive dynamic inf uence diagram (I-DID). I-DIDs may be
viewed as graphical representations of I-POMDPs. They generalize DIDs (dy-
namic IDs), which are graphical counterparts of POMDPs, to multiagent settings
in the same way that I-POMDPs generalize POMDPs.

In this paper, we signif cantly improve on the previous preliminary represen-
tation of I-DIDs by f rst introducing static interactive inf uence diagrams (I-ID),
relating them to another multiagent graphical model, network of inf uence dia-
grams (NID) [13], and then extending I-IDs to their dynamic counterparts, interac-
tive dynamic inf uence diagrams (I-DIDs). Analogous to DIDs, I-DIDs compactly
represent the decision problem by mapping various variables into chance, decision
and utility nodes, and denoting the dependencies between variables using directed
arcs between the corresponding nodes. However, matters are more complex when
we consider multiagent interactions that are extended over time, where predictions
about others’ future actions must be made using models that change as the agents
act and observe. I-DIDs address this gap by allowing the representation of other
agents’ models as the values of a special model node. Both other agents’ mod-
els and the original agent’s beliefs over these models are updated over time using
special-purpose implementations. Specif cally, the update of the agent’s belief over
the models of others as the agents act and receive observations is denoted using a
special link called the model update link that connects the model nodes between
time steps.

To facilitate understanding, we explicate the semantics of the model node and
the model update link by showing how they can be implemented using the tradi-
tional dependency links between the chance nodes that constitute the model nodes.
The net result is a representation of I-DID that is transparent and semantically clear
in comparison to [28], and capable of being implemented using the standard algo-
rithms for solving DIDs. We show how I-DIDs may be used to model an agent’s
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Fig. 1 The relationship between the four representations along two dimensions. The ver-
tical dimension (dashed arrows) specif es the generalization from the single agent to the
multiagent setting, while the horizontal dimension (solid arrows) is the mapping from the
enumerative to the graphical representation.

uncertainty over others’ models that may themselves be I-DIDs leading to recur-
sive modeling. Solution to the I-DID is a policy that prescribes what the agent
should do over time, given its beliefs over the physical state and others’ models.
Analogous to DIDs, I-DIDs may be used to compute the policy of an agent online
– given an initial belief of the agent – as the agent acts and observes in a setting
that is populated by other interacting agents. We also explain how elements of the
I-DID map to the enumerative representation of I-POMDP. Additionally, we illus-
trate their computational advantages in domains where structure can be exploited.

In Fig. 1, we summarize the relationship along two dimensions between the
different formalisms that we mention in this paper. Specif cally, I-DIDs generalize
DIDs to multiagent settings analogously to the way by which I-POMDPs general-
ize POMDPs. Additionally, I-DIDs provide a graphical counterpart to the enumer-
ative representation of I-POMDPs similar to how DIDs are graphical counterparts
of POMDPs.

As we may expect, I-DIDs acutely suffer from both the curses of dimensional-
ity and history [27]. This is because the state space in I-DIDs includes the models
of other agents in addition to the traditional physical states. As the agents act, ob-
serve, and update beliefs, I-DIDs must track the evolution of the models over time.
Often, the number of candidate models grows exponentially over time. Conse-
quently, I-DIDs not only suffer from the curse of history that aff icts the modeling
agent, but also from that exhibited by the modeled agents. This is further compli-
cated by the nested nature of the state space.

In this article, we also present a method of reducing the dimensionality of the
interactive state space and mitigate the impact of the curse of history that aff icts
the modeled agents. Our method limits and holds constant the number of models,
0 < K � M , where M is the possibly large number of candidate models, of the
other agents included in the state space.

Using the insight that beliefs that are spatially close are likely to be behav-
iorally equivalent [30], our approach is to cluster the models of the other agents
and select representative models from each cluster. In this regard, we utilize the
popular k-means clustering method [22], which gives an iterative way to generate
the clusters. Intuitively, the clusters contain models that are likely to be behav-
iorally equivalent and hence may be replaced by a subset of representative models
without a signif cant loss in the optimality of the decision maker. We select K

representative models from the clusters and update them over time.
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For the approximation technique, we theoretically bound the worst case error
introduced by the approach in the policy of the other agent for two-agent settings
and empirically measure its impact on the quality of the policies pursued by the
original agent. Our empirical results on two application scenarios – the multiagent
tiger and machine maintenance problems – demonstrate the computational savings
obtained in solving the I-DIDs and the favorable performances of the approach.

The remainder of this paper is structured as follows. In Section 2, we compare
and analyze the related work. In Section 3, we brief y review the framework of I-
POMDPs and inf uence diagrams that underlie our work. In Section 4, we present
the new models of I-IDs and I-DIDs in detail and illustrate them using example
applications. In Section 5, we present the exact algorithm for solving I-DIDs and
discuss example solutions of the illustrative problems. We also demonstrate the
computational advantage that I-DIDs offer over the enumerative representations
of I-POMDPs. In Section 6, we formally propose an approximation technique and
discuss the details of its implementation. Furthermore, in Section 7, we discuss
its computational complexity and provide theoretical error bounds. We then pro-
vide, in Section 8, experimental results that demonstrate the performance of our
approximation technique comparing it with exact solutions with respect to the so-
lution quality and run times. Section 9 concludes this paper with a discussion and
future lines of work.

2 Related Work

Suryadi and Gmytrasiewicz [35] produced an early piece of related work, in which
they proposed modeling other agents using IDs. Though IDs (and not DIDs) were
used to model other agents, the approach proposed ways to modify the IDs to better
ref ect the observed behavior. However, unlike I-DIDs, other agents did not model
the original agent and the distribution over the models was not updated based on
the actions and observations.

I-DIDs contribute to a growing line of work on multiagent decision making that
includes multiagent inf uence diagrams (MAID) [20], and more recently, networks
of inf uence diagrams (NID) [13]. These formalisms seek to explicitly model the
structure that is often present in real-world problems by decomposing the situa-
tion into chance and decision variables, and the dependencies between the vari-
ables. MAIDs provide an alternative to normal and extensive game forms using a
graphical formalism to represent games of imperfect information with a decision
node for each agent’s actions and chance nodes capturing the agent’s private in-
formation. MAIDs objectively analyze the game, eff ciently computing the Nash
equilibrium prof le by exploiting the independence structure. NIDs extend MAIDs
to include agents’ uncertainty over the game being played and over models of the
other agents. Each model is a MAID and the network of MAIDs is collapsed, bot-
tom up, into a single MAID for computing the equilibrium of the game keeping in
mind the different models of each agent.

Graphical formalisms such as MAIDs and NIDs open up a promising area of
research that aims to represent multiagent interactions more transparently. How-
ever, MAIDs provide an analysis of the game from an external viewpoint and the
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applicability of both is limited to static single play games. The interactions we con-
sider are extended over time, where predictions about others’ future actions must
be made using models that change as the agents act and observe. I-DIDs allow
the explicit representation of other agents’ models as the values of a special model
node. Other agents’ models and the original agent’s beliefs over these models are
then updated over time.

As we seek a formalism that facilitates planning and problem solving at an
agent’s own individual level, we extended IDs to the multiagent setting, rather
than utilize MAIDs. This is because MAIDs represent multiagent games objec-
tively and facilitate their analysis from an external perspective. They adopt Nash
equilibrium as a solution concept. However, equilibrium is not unique – there could
be many joint solutions in equilibrium with no clear way for an agent to choose be-
tween them – and incomplete – the prescribed policy is not optimal when the pol-
icy followed by the other agent is not part of the equilibrium. Specif cally, MAIDs
do not allow us to def ne a distribution over non-equilibrium behaviors of other
agents. In comparison, I-DIDs provide a way to exploit predicted non-equilibrium
behavior. Thus, MAIDs are not amenable to modeling decision making in multia-
gent settings from an individual agent’s perspective.

In prior work [28], Polich and Gmytrasiewicz introduced I-DIDs as the graphi-
cal representations of I-POMDPs. In this article, we signif cantly improve on their
previous preliminary representation of I-DID by using the insight that the static
I-ID is a type of NID. Furthermore, we clearly explicate the semantics of the new
constructs such as the model node and model update link by showing how they
can be implemented using the traditional chance nodes and dependency links be-
tween the chance nodes. Consequently, I-IDs and I-DIDs may be solved using the
standard techniques useful in solving IDs and DIDs.

In the context of I-POMDPs, previous solution techniques have focused on
their enumerative forms. One such approximation technique [8,9] reduces the
model space complexity by sampling models considered likely by the agent. The
models are then propagated over time using a particle f ltering technique general-
ized to multiple agents, called the interactive particle f lter. Though applicable in
I-DIDs, because the technique does not mitigate the curse of history, it does not
provide a way to reduce the exponential growth in the models over time while ex-
panding the I-IDs. As it approximates the belief revision, it f nds application only
while solving the I-DIDs. However, exponential numbers of models are generated
while expanding the I-ID over multiple time steps; thus the technique is less effec-
tive in approximating I-DIDs. In addition, because we prune models that are likely
to be behaviorally equivalent, our approach results in solutions that are likely to be
of similar or better quality given some number of models.

Other principled efforts that generalize decision theory to multiagent systems
include Markov games [21], multiagent MDP [3], and decentralized POMDP [24,
32]. All of these assume that the solution, often the equilibrium, is computed cen-
trally and distributed to the agents. Their applicability is limited to fully cooper-
ative settings (teams), in contrast, I-DIDs and I-POMDPs may be used in non-
cooperative situations as well.
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3 Background

Our work builds on the framework of f nitely nested I-POMDPs [14] and gen-
eralizes the well-known graphical formalisms of inf uence diagrams (ID) [18] to
multiagent settings. In this section, we brief y review the I-POMDP framework
which provides the mathematical foundation for the new graphical models. We
then provide a selective overview of IDs referring the reader to [31] for a more
introductory description.

3.1 Finitely Nested Interactive POMDPs

Interactive POMDPs generalize POMDPs to multiagent settings by including other
agents’ models as part of the state space. Models of other agents include their pri-
vate information such as beliefs, capabilities, and preferences, and are thus analo-
gous to types in Bayesian games [17]. As agents may have beliefs about the models
of others, the augmented state space, called the interactive state space, is strategi-
cally nested – it contains beliefs about other agents’ models and their beliefs about
others. For the simplicity of presentation let us consider two agents, i and j, which
are interacting in a common environment:

Def nition 1 (I-POMDPi,l) A f nitely nested I-POMDP of agent i with a strategy
level l is

I-POMDPi,l = 〈ISi,l, A, Ti, Ωi, Oi, Ri〉

where:
• ISi,l is a set of interactive states def ned as, ISi,l = S×Mj,l−1, whereMj,l−1 =
{Θj,l−1 ∪ SMj}, for l ≥ 1, and ISi,0 = S, where S is the set of states of the
physical environment. Θj,l−1 is the set of computable intentional models of agent
j. The remaining set of models, SMj , is the set of subintentional models of j;
• A = Ai × Aj , is the set of joint actions of all agents in the environment;
• Ti is a transition function, Ti : S × A × S → [0, 1]. It ref ects the possibly
uncertain effects of the joint actions on the physical states of the environment;
• Ωi is the set of observations of agent i;
• Oi is an observation function,Oi : S×A×Ωi → [0, 1]. It describes how likely it
is for agent i to receive the observations given the physical state and joint actions;
• Ri is a reward function, Ri : ISi × A → R. It describes agent i’s preferences
over its interactive states and joint actions, though usually only the physical states
and actions matter.

Intentional models ascribe to the other agent beliefs, preferences and rational-
ity in action selection [7] and are analogous to types as used in game theory [17].
Each intentional model, θj,l−1 = 〈bj,l−1, θ̂j〉, where bj,l−1 is agent j’s belief at
level l − 1, and the frame, θ̂j = 〈A, Tj , Ωj , Oj , Rj , OCj〉. Here, j is assumed
Bayes rational and OCj is j’s optimality criterion.

A subintentional model is a triple, smj = 〈hj , Oj , fj〉, where fj : Hj →
∆(Aj) is agent j’s function, assumed computable, which maps possible histo-
ries of j’s observations to distributions over its actions. hj is an element of Hj
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and Oj gives the probability with which j recieves its input. Simple examples of
subintentional models include a no-information model [15] and the f ctitious play
model [11], which is history dependent. Such models would be extended at each
time step to incorporate the revised history. Another example of a subintentional
model is a f nite state automaton.

Notice that because the intentional models include the beliefs as well, the state
space is naturally nested. We give a recursive bottom-up construction of the inter-
active state space below.
ISi,0 = S, Θj,0 = {〈bj,0, θ̂j〉 | bj,0 ∈ ∆(ISj,0)}

ISi,1 = S × {Θj,0 ∪ SMj}, Θj,1 = {〈bj,1, θ̂j〉 | bj,1 ∈ ∆(ISj,1)}
...

...
ISi,l = S × {Θj,l−1 ∪ SMj}, Θj,l = {〈bj,l, θ̂j〉 | bj,l ∈ ∆(ISj,l)}

Here, Θj,0 is the set of POMDPs1, and the associated θ̂j represents the parameters
of the POMDP. Similar formulations of nested state spaces have appeared in the
game-theoretic literature (see, for example, [1,2,23]).

Solution to a f nitely nested I-POMDP (hereafter, referred to as I-POMDP for
simplicity) is the agent i’s policy which is a mapping of its beliefs on the interactive
states to a distribution over its actions,∆(ISi) → ∆(Ai). Analogous to POMDPs,
the two steps, namely belief update and policy computation, are used to solve an
I-POMDP.

3.1.1 I-POMDP Belief Update Analogous to POMDPs, an agent within the I-
POMDP framework updates its belief as it acts and observes. However, there are
two differences that complicate the belief update in multiagent settings when com-
pared to single agent ones. First, since the state of the physical environment de-
pends on the joint actions of both agents, i’s prediction of how the physical state
changes has to be made based on its prediction of j’s actions obtained from the
models. Second, changes in j’s models have to be included in i’s belief update.
Specif cally, if j is intentional then an update of j’s beliefs due to its action and
observation has to be included. In other words, i has to update its belief based on its
prediction of what j would observe and how j would update its belief. If j’s model
is subintentional, then j’s probable observations are appended to the observation
history contained in the model. Formally, we have:

Pr(ist+1|at
i, b

t
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∑
ISt:m̂t

j=θ̂t+1

j
bt
i,l(is

t)
∑

at
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j )δK(SEθ̂t+1

j
(bt
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(1)
where β is the normalizing constant, δK is the Kronecker delta and is 1 if its argu-
ment is 0 otherwise it is 0, Pr(at

j |θ
t
j,l−1

) is the uniform distribution over actions
that are Bayes rational for the agent described by the model, θt

j,l−1
, and SE(·)

is an abbreviation for the belief update. If j’s models are level 0 POMDPs, then
SE(·) represents the standard POMDP belief update, otherwise it represents the

1 Other agent’s actions are folded in as noise into the T , O and R functions.
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update described above. The belief update equation for the case where j’s models
are subintentional is given in [14].

As we mentioned before, the belief update as formalized by Eq. 1 updates
not only agent i’s belief over the physical states but also its belief on j’s models.
Agent i’s updated distribution on the physical states is given by the probability of
transitioning to the new state, Ti(s

t, at
i, a

t
j , s

t+1), and it is corrected using the like-
lihood of the observation from the state, Oi(s

t+1, at
i, a

t
j , o

t+1

i ). However, because
the transition and observation depends on the actions of the other agent, the prob-
ability of its actions must be predicted. The distribution over j’s actions is given
by the term, Pr(at

j |θ
t
j,l−1

). As the other agent acts and observes as well, it’s belief
must be updated, which is represented by SE(·). Agent i’s belief over j’s updated
belief depends on the probability with which j acts and makes its observations
given by the factor, Oj(s

t+1, at
i, a

t
j , o

t+1

j ).
If agent j is also modeled as an I-POMDP, then i’s belief update invokes j’s

belief update (via the term SEθ̂t+1

j
( bt

j,l−1
, at

j , o
t+1

j )), which in turn could invoke
i’s belief update and so on. This recursion in belief nesting bottoms out at the
0th level. At this level, the belief update of the agent reduces to a POMDP belief
update.

3.1.2 Policy Computation Each belief state of agent i in an I-POMDP has an
associated value ref ecting the maximum payoff the agent can expect in this belief
state for the case of a f nite horizon, n:

Un(〈bi,l, θ̂i〉) = max
ai∈Ai

{ ∑
is∈ISi,l

ERi(is, ai)bi,l(is) + γ
∑

oi∈Ωi

Pr(oi|ai, bi,l)

Un−1(〈SEθ̂i
(bi,l, ai, oi), θ̂i〉)

} (2)

where, ERi(is, ai) =
∑

aj
Ri(is, ai, aj)Pr(aj |mj,l−1) (since is = (s,mj,l−1)).

Eq. 2 is a basis for value iteration in I-POMDPs.
For the case of a f nite horizon with discount factor γ, agent i’s optimal action,

a∗
i , is an element of the set of optimal actions for the belief state,OPT (θi), def ned
in Eq. 3. Thus, the f nite horizon policy is a mapping from the agent’s belief state
to the set of optimal actions, indexed by the horizon.

OPT (〈bi,l, θ̂i〉) = argmax
ai∈Ai

{ ∑
is∈ISi,l

ERi(is, ai)bi,l(is) + γ
∑

oi∈Ωi

Pr(oi|ai, bi,l)

Un(〈SEθ̂i
(bi,l, ai, oi), θ̂i〉)

}

(3)

3.2 Inf uence Diagrams

Awell-known graphical formalism for describing and solving decision-making sit-
uations is the inf uence diagram (ID) [18,33,36]. Graphical models, such as IDs,
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offer a formalism that decomposes the state into chance (random) variables and de-
pendencies between the variables, decision nodes for modeling the action choices,
and utility nodes for representing the agent’s preferences. As we mentioned pre-
viously, graphical models are an explicit qualitative description of the decision-
making situation. We observe that an ID augments a Bayesian network [26] with
decision and utility nodes.

�
�

�
�

�
�

�

�
���

�
���

�
���

�

Fig. 2 A two time-slice dynamic ID representing the decision-making problem of an agent.
The oval nodes representing the state (S) and the observation (Ω) ref ected in the obser-
vation function, O, are the chance nodes. The rectangle is the decision node (A) and the
diamond is the reward function (R). Inf uences (links) connect nodes within the same time
slice as well as nodes across time slices.

In an ID, the traditional |S|2-size transition matrices are decomposed into ta-
bles of smaller sizes, each of which models the local effect of an action on some
variables. IDs also f nd another purpose: they may be used to deliberate the optimal
action of an agent online given its initial belief as it acts and observes. On solving
an ID unrolled over as many time slices as the horizon, called a dynamic ID and
shown in Fig. 2, we obtain the value of performing each action in the decision
node, with the best action being the one with the largest value.

Dynamic IDs are structured representations of POMDPs [31]. The values of
the decision node, At, constitute the set of actions, A, in a POMDP. The values
of the chance node, St, 2 and the observation node, Ot, are the sets of states and
observations, respectively, in a POMDP. The conditional probability distribution
(CPD), Pr(St+1|St, At), of the chance node, St+1, is the transition function, T

in a POMDP. The CPD, Pr(Ot+1|St+1, At), of the chance node, Ot+1, is the
observation function, O, and the utility table of the value node, R, is the reward
function, R, in a POMDP.

Dynamic IDs are suitable for describing single agent decision-making situa-
tions or multiagent problems where the other agents are modeled as automatons
whose actions are guided by a f xed and known probability distribution.

4 Graphical Models for I-POMDPs

As we mentioned previously, naive extensions of IDs to settings populated by mul-
tiple agents are possible by treating other agents as automatons, represented using

2 Note that S could be factored into chance nodes and dependency links between them.



10 Prashant Doshi et al.

�

��

��

��

���	
�

��

Fig. 3 A generic level l I-ID for agent i situated with one other agent j. The hexagon is the
model node (Mj,l−1) and the dashed arrow is the policy link. Members of the model node
could be I-IDs themselves or IDs (m1

j,l−1, m
2
j,l−1; diagrams not shown here for simplicity)

representing intentional models.

chance nodes. However, this approach assumes that the agents’ actions are con-
trolled using a probability distribution that does not change over time. We intro-
duce graphical formalisms that adopt a more sophisticated approach by generaliz-
ing IDs to make them applicable to settings shared with other agents who may act
and observe, and update their beliefs.

4.1 Interactive Inf uence Diagrams (I-IDs)

We introduce interactive inf uence diagrams (I-ID) that generalize IDs to multia-
gent settings in this section. In addition to the usual chance, decision, and utility
nodes, I-IDs include a new type of node called the model node. We show a general
level l I-ID in Fig. 3, where the model node,Mj,l−1, is denoted using a hexagon. In
addition to the model node, I-IDs differ from IDs by having a dashed link (called
the “policy link” in prior work [28]) between the model node and a chance node,
Aj , that represents the distribution over the other agent’s actions given its model.
In the absence of other agents, the model node and the chance node, Aj , vanish
and I-IDs collapse into traditional IDs. For more than two agents, we add a model
node and a chance node representing the distribution over an agent’s action linked
together using a policy link, for each other agent. The new model nodes are con-
ditioned on the physical state and possibly model nodes of other agents’ while the
chance nodes are linked to the utility node.

The model node contains as its values the alternative computational models
ascribed by i to the other agent from the set,Θj,l−1∪SMj , whereΘj,l−1 and SMj

were def ned previously in Section 3.1. A model in the model node may itself be
an I-ID, ID or a probability distribution over actions, and the recursion terminates
when a model is an ID or subintentional. Because the model node contains the
alternative models of the other agent as its values, its representation is not trivial. In
particular, some of the models within the node are I-IDs that when solved generate
the agent’s optimal action(s) in their decision nodes. Each decision node is mapped
to a corresponding chance node, sayA1

j , in the following way: ifOPT is the set of
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Fig. 4 (a) Representing the model node and policy link using chance nodes and dependen-
cies between them. The decision nodes of the lower-level I-IDs or IDs (m1

j,l−1, m2
j,l−1) are

mapped to the corresponding chance nodes (A1
j , A2

j ), which is indicated by the dotted ar-
rows. Depending on the value of the node, Mod[Mj], the distribution of each of the chance
nodes is assigned to the node Aj in its CPD. (b) In order to solve the I-ID, we obtain a f at
ID by replacing the model node and the policy link in the I-ID of Fig. 3 with the chance
nodes and the relationships between them as shown in (a). Distributions for the chance
nodes, A1

j and A2
j , are obtained by solving the models, m1

j,l−1 and m2
j,l−1, respectively.

optimal actions obtained by solving the I-ID (or ID), then Pr(aj ∈ A1
j ) = 1

|OPT |

if aj ∈ OPT , 0 otherwise.
Borrowing insights from previous work [13], we observe that the model node

and the dashed policy link that connects it to the chance node, Aj , could be repre-
sented as shown in Fig. 4(a). The decision node of each level l−1 I-ID is mapped
to a chance node, as we mentioned previously, so that the actions with the largest
value in the decision node are assigned uniform probabilities in the chance node
while the rest are assigned zero probability. The different chance nodes (A1

j , A
2
j ),

one for each model, and additionally, the chance node labeled Mod[Mj ] form the
parents of the chance node, Aj . As each action node is associated with a model,
there are as many action nodes in Mj,l−1 as the number of models in the model
node. The CPD of the chance node, Aj , is a multiplexer that assumes the distri-
bution of each of the action nodes (A1

j , A
2
j ) depending on the value of Mod[Mj ].

The values of Mod[Mj ] denote the different models of j. In other words, when
Mod[Mj ] has the value m1

j,l−1
, the chance node Aj has the distribution over its

values that the nodeA1
j has, andAj assumes the distribution ofA2

j whenMod[Mj ]

has the value m2
j,l−1

. The distribution over the node, Mod[Mj ], is the agent i’s
top-level belief over the level l − 1 models of j given a physical state. Notice that
Fig. 4(a) also clarif es the semantics of the policy link, and shows how it can be
represented using the traditional dependency links.

In Fig. 4(b), we show the f at ID when the model node in Fig. 3 is replaced by
the chance nodes and the relationships between them. Distributions for the chance
action nodes are obtained by solving the lower level models. There are no special-
purpose policy links, rather it is composed of only those types of nodes and de-
pendency relationships between the nodes that are found in traditional IDs. This
allows I-IDs to be implemented and solved using conventional application tools
that target IDs.
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Fig. 5 A level l I-ID represented as a NID. The probabilities assigned to the blocks of the
NID are i’s beliefs over j’s models conditioned on a physical state.

Note that we may view the level l I-ID as a NID [13]. Specif cally, each of the
level l − 1 models within the model node are blocks in the NID (see Fig. 5). If the
level l = 1, each block is a traditional ID, otherwise if l > 1, each block within the
NID may itself be a NID. Note that within the I-IDs (or IDs) at each level, there is
only a single decision node. Thus, our NID does not contain any MAIDs.

4.2 Interactive Dynamic Inf uence Diagrams (I-DIDs)

Interactive dynamic inf uence diagrams (I-DIDs) extend the formalism of interac-
tive inf uence diagrams (I-IDs) to solve dynamic decision problems, just as DIDs
extend IDs. We show a general level l I-DID for two time slices in Fig. 6.
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Fig. 6 An I-DID unrolled over two time horizons. The dotted arrow between the model
nodes is called the model update link.

Note that the CPD, Pr(St+1|St, At
i, A

t
j), of the chance node, St+1, is the

transition function, Ti in the I-POMDPi,l, the CPD, Pr(Ot+1

i |St+1, At
i, A

t
j), of

the chance node, Ot+1

i , is the observation function, Oi. In addition to the model
nodes and the dashed policy link, what differentiates an I-DID from a DID is the
model update link shown as a dotted arrow in Fig. 6. We explained the semantics of
the model node and the policy link in the previous section; we describe the model
update next.
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The update of the model node over time involves two steps: First, given the
candidate models at time t, we identify the updated set of models that reside in the
model node at time t+1. Recall from Section 3.1 that an agent’s intentional model
includes its belief. Because the agents act and receive observations, their models
are updated to ref ect their changed beliefs. In some cases, the update may result
in a model whose structure may be different from that previously. Since the set of
optimal actions for a model could include all the actions, and the agent may receive
any one of |Ωj | possible observations, the updated set at time step t + 1 will have
at most |M t

j,l−1
||Aj ||Ωj | models. Here, |M t

j,l−1
| is the number of models at time

step t, |Aj | and |Ωj | are the largest spaces of actions and observations respectively,
among all the models. Second, we compute the new distribution over the updated
models given the original distribution and the probability of the agent performing
the action and receiving the observation that led to the updated model.

��
�

��
�

������
	



��
	

�
	

�����
	

�����
	��

������
	��



��
	��

�����
	��

��
	��

��
�

��
�

�
	��

��
	

��
������

	����

��
������

	����

��
������

	����

��
������

	����

�����
	��

Fig. 7 Representing the model update link between model nodes using chance nodes and
dependency links between them. Notice the growth in the number of models in the model
node at t + 1 (highlighted in bold).

In Fig. 7, we show how the dotted model update link in the I-DID could be
implemented. If each of the two level l − 1 models ascribed to j at time step t

results in one action, and j could make one of two possible observations, then
the model node at time step t + 1 contains four updated models (mt+1,1

j,l−1
,mt+1,2

j,l−1
,

m
t+1,3
j,l−1

, and m
t+1,4
j,l−1

). These models differ in their initial beliefs, each of which is
the result of j updating its beliefs due to its action and a possible observation. The
decision nodes in each of the I-DIDs or DIDs that represent the lower level models
are mapped to the corresponding chance nodes, as mentioned previously.

Next, we describe how the distribution over the updated set of models (the
distribution over the chance node Mod[M t+1

j ] in M t+1

j,l−1
) is computed. The prob-

ability that j’s updated model is, say m
t+1,1
j,l−1

, depends on the probability of j per-
forming the action and receiving the observation that led to this model, and the
prior distribution over the models at time step t. Because the chance node At

j as-
sumes the distribution of each of the action nodes based on the value ofMod[M t

j ],
the probability of the action is given by this chance node. In order to obtain the
probability of j’s possible observation, we introduce the chance nodeOt+1

j , which
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depending on the value of Mod[M t
j ] assumes the distribution of the observation

node in the lower level model denoted by Mod[M t
j ]. Analogous to At

j , the con-
ditional probability table of Ot+1

j is also a multiplexer modulated by Mod[M t
j ].

Because the probability of j’s observations depends on the physical state and the
joint actions of both agents, the chance nodes, O1

j and O2
j , are linked with St+1,

A1
j , and A2

j respectively 3. Finally, the distribution over the prior models at time t

is obtained from the chance node, Mod[M t
j ] in M t

j,l−1
. Consequently, the chance

nodes, Mod[M t
j ], At

j , and Ot+1

j , form the parents of Mod[M t+1

j ] in M t+1

j,l−1
. No-

tice that the model update link may be replaced by the dependency links between
the chance nodes that constitute the model nodes in the two time slices.

Expansion of the I-DID over more time steps translates into repeating the two
steps of updating the set of models that form the values of the model node and
adding the relationships between the chance nodes, as many times as there are
model update links. We note that the possible set of models of the other agent j

grows exponentially with the number of time steps. For example, after T steps,
there may be at most |M t=1

j,l−1
|(|Aj ||Ωj |)

T−1 candidate models residing in the
model node.
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Fig. 8 A f at DID obtained by replacing the model nodes and model update link in the I-
DID of Fig. 6 with the chance nodes and the relationships (in bold) as shown in Fig. 7. The
lower level models are solved to obtain the distributions for the chance action nodes.

In Fig. 8 we show the two time-slice f at DID with the model nodes and the
model update link replaced by the chance nodes and the relationships between
them. Chance nodes and dependency links not in bold are standard, usually found
in single agent DIDs.

3 Note that O1
j and O2

j represent j’s observations at time t + 1, and arise from different
j’s models.
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4.3 Mapping I-DIDs to I-POMDPs

Analogously to the relation between DIDs and POMDPs, elements of I-DIDs
could be mapped to those of I-POMDPs as def ned in Section 3.1. The values
of the decision node, Ai in Fig. 6, is the set of actions of agent i, and similarly for
the chance node Aj . Their joint is the set of joint actions of both agents, A, in the
def nition of I-POMDPi,l. The values of the chance node, S, and the observation
node, Oi, are the sets of physical states and observations of i, respectively, in the
I-POMDP. The CPDs of the chance nodes, St+1 and Ot+1

i , are the transition and
observation functions, Ti and Oi of agent i in the I-POMDP. The utility table of
the value node, Ri, is the reward function, Ri of agent i in the I-POMDP.

The chance, decision, utility nodes and the associated edges in an I-DID consti-
tute the frame of an intentional model as def ned in Section 3.1. As we mentioned
previously, the model node contains as its values the alternative computational
models ascribed by i to the other agent from the set, Θj,l−1 ∪ SMj , where Θj,l−1

and SMj were def ned previously (Section 3.1). Thus, the set of pairs, each con-
sisting of a value of node S and a model in node,Mj,l−1, constitutes the interactive
state space, ISi,l, in I-POMDP. The joint probability distribution over the chance
node, S, and the node Mod[Mj ] in the model node represents the top-level prob-
ability distribution that agent i has over its interactive states, ISi,l.

As we may expect, the update of the model node over time closely relates to the
belief update process in Eq. 1. The update of agent j’s belief given its action and
observation (the term, SEθ̂j

(bt
j,l−1

, at
j , o

t+1

j ) in Eq. 1) results in new models with
updated beliefs at time t + 1 in Fig. 8; one model for each combination of an opti-
mal action and observation of j that results in a unique belief. The distribution over
the chance node, At

j , conditioned on Mod[M t
j ] is the distribution, Pr(at

j |θ
t
j,l−1

)

appearing in Eq. 1, where θt
j,l−1

is an I-DID or DID in the model node. Finally,
the updated distribution over the physical states and models of j is the distribution
over St+1 and Mod[M t+1

j ] as obtained using the standard inference. The infer-
ence propagates through parents of the Mod[M t+1

j ] node, which is equivalent to
summing over at−1

j and ot
j in Eq. 1. Note that Mod[M t+1

j ] is conditioned on the
chance node Ot+1

j thereby accounting for j’s observation function that appears in
Eq. 1.

4.4 Example Representations

In order to illustrate the usefulness of I-DIDs, we apply them to three illustra-
tive problems. We describe, in particular, the formulation of the I-DIDs for these
examples.

4.4.1 Multiagent Tiger Problem We begin our illustrations of using I-IDs and I-
DIDs with a slightly modif ed version of the multiagent tiger problem [14]. The
problem has two agents, each of which can open the right door (OR), the left door
(OL) or listen (L). In addition to hearing growls (from the left (GL) or from the
right (GR)) when they listen, the agents also hear creaks (from the left (CL), from
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the right (CR), or no creaks (S)), which noisily indicate the other agent’s opening
one of the doors or listening. When any door is opened, the tiger persists in its
original location with a probability of 95%. Agent i hears growls with a reliability
of 65% and creaks with a reliability of 95%. Agent j, on the other hand, hears
growls with a reliability of 95%. Thus, the setting is such that agent i hears agent
j opening doors more reliably than the tiger’s growls. This suggests that i could
use j’s actions as an indication of the location of the tiger, as we discuss later.
Each agent’s preferences are as in the single agent game discussed in the original
version [19]. The transition, observation, and reward functions are as shown in
Appendix A.

Let us consider a particular setting of the tiger problem in which agent i con-
siders two distinct level 0 models of j. This is represented in the level 1 I-ID shown
in Fig. 9. The two IDs could differ, for example, in the probability that j assigns
to the tiger being behind the left door as modeled by the node TigerLocation.
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Fig. 9 (a) Level 1 I-ID of agent i, (b) two level 0 IDs of agent j whose decision nodes are
mapped to the chance nodes, A1

j , A2
j , in (a), indicated by the dotted arrows. The two IDs

differ in the distribution over the chance node, TigerLocation.

Given the level 1 I-ID, we may expand it into the I-DID shown in Fig. 10. The
model node, M t

j,0, contains the different DIDs that are expanded from the level 0
IDs in Fig. 9(b). The DIDs may have different probabilities about the tiger location
at time step t. We get the probability distribution of j’s actions in chance node At

j

by solving the level 0 DIDs of j. On performing the optimal action(s) at time step
t, j may receive observations of the tiger’s growls. This is ref ected in new beliefs
on the tiger’s position within j’s DIDs at time step t + 1. Consequently, the model
node, M t+1

j,0 , contains more models of j and i’s updated belief on j’s possible
DIDs.

4.4.2 Public Good Problem The public good (PG) problem [12], consists of a
group ofM agents, each of whom must either contribute some resource to a public
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Fig. 10 Level 1 I-DID of agent i for the multiagent tiger problem. The model node contains
level 0 DIDs of agent j. At horizon 1, the models of j are IDs.

pot or keep it for themselves. Since resources contributed to the public pot are
shared among all the agents, they are less valuable to the agent when in the public
pot. However, if all agents choose to contribute their resources, then the payoff to
each agent is more than if no one contributes. Since an agent gets its share of the
public pot irrespective of whether it has contributed or not, the dominating action
is for each agent to not contribute, and instead “free ride” on others’ contributions.

For simplicity, we assume that the game is played between N = 2 agents, i

and j. Let each agent be initially endowed with XT amount of resources. While
the classical PG game formulation permits each agent to contribute any quantity of
resources (≤ XT ) to the public pot, we simplify the action space by allowing two
possible actions. Each agent may choose to either contribute (C) a f xed amount
of the resources, or not contribute. The latter action is denoted as defect (D). We
assume that the actions are not observable to others. The value of resources in the
public pot is discounted by ci for each agent i, where ci is the marginal private
return. We assume that ci < 1 so that the agent does not benef t enough that it
contributes to the public pot for private gain. Simultaneously, ciN > 1, making
collective contribution Pareto optimal.

i/j C D
C 2ciXT , 2cjXT ciXT − cp, XT + cjXT − P
D XT + ciXT − P, cjXT − cp XT , XT

Table 1 The one-shot PG game with punishment.

In order to encourage contributions, the contributing agents punish free riders
but incur a small cost for administering the punishment. Let P be the punishment
meted out to the defecting agent and cp the non-zero cost of punishing for the
contributing agent. For simplicity, we assume that the cost of punishing is same
for both the agents. The one-shot PG game with punishment is shown in Table. 1.
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Let ci = cj , cp > 0, and if P > XT − ciXT , then defection is no longer a
dominating action. If P < XT − ciXT , then defection is the dominating action
for both. If P = XT − ciXT , then the game is not dominance-solvable.
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Fig. 11 (a) Level 1 I-ID of agent i for the PG problem, (b) level 0 IDs of agent j with
decision nodes mapped to the chance nodes, A1

j and A2
j , in (a).

Though in the standard repeated PG game, the quantity in the public pot is
revealed to all the agents after each round of actions, we assume in our formulation
that it is hidden from the agents. Each agent may contribute a f xed amount, xc, or
defect. An agent on performing an action receives an observation of plenty (PY) or
meager (MR) symbolizing the state of the public pot. Notice that the observations
are also indirectly indicative of agent j’s actions because the state of the public pot
is inf uenced by them. The amount of resources in agent i’s private pot, is perfectly
observable to i. The payoffs are analogous to Table. 1.

We construct level 0 IDs for j that model two distinct types, one whose marginal
private return, cj , is high and does not punish free riders (encoded in the reward
function), and the other whose cj is low. While the former type always contributes,
the latter chooses to predominantly defect. We show the level 1 I-ID that represents
this problem in Fig. 11. The two level 0 IDs have different reward functions in the
utility nodes R1

j and R2
j respectively.

Expanding the level 1 I-ID of agent i, we show the I-DID in Fig. 12. The two
level 0 IDs in Fig. 11(b) are unrolled into DIDs that are contained in the model
node M t

j,0. Since level 0 DIDs have different rewards in the utility nodes we get
different probability distributions of j’s actions in chance node At

j . At time step t,
j may observe the status of the public pot as indicated in chance node PotStatust.
This results in several more level 0 DIDs at time step t+1. Hence the model node,
M t+1

j,0 , contains j’s DIDs in which j has different beliefs on the status of the public
pot depending on its previous observations.

4.4.3 Online Shopper’s Dilemma Our third example application is in the area of
e-commerce and inspired by the behavior of real-world users on online auction
portals such as eBay. We consider the scenario where the seller and the buyer will
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Fig. 12 Level 1 I-DID of agent i. The model node contains level 0 DIDs of agent j, which
reduce to IDs at horizon 1.

f nalize their transaction, after an agreement on the price of some merchandise.
The seller will deliver to the buyer the agreed upon item and the buyer will trans-
fer to the seller an amount of money, simultaneously. We consider multiple such
transactions occurring sequentially between the buyer and the seller.

As is sometimes the case, the seller may choose to deliver a substandard item
to the buyer, while the buyer may elect to transfer a partial amount of the money.
Such actions are dependent, in part, on the reputation of the online portal – portals
with strict policies against fraud experience less fraudulent behavior – and on the
trustworthiness of the seller. The reputations of the portals are often inferred from
online reviews which may be good (G) or bad (B).

We model the decision situations of the buyer and the seller using I-DIDs. We
suppose that both the buyer, i, and the seller, j, have a valuation for the item. The
valuations are denoted by vi and vj , respectively, and they represent how much
the item is worth to the participants. We assume that the participants have already
agreed on the price, cij , for the item, but that the money has not been transferred.
Agent imay transfer the full money, cij , or a partial amount, γcij (discount factor:
γ ∈ (0, 1]), to the seller j. Simultaneously, agent j may deliver items of differing
quality levels. For the sake of simplicity, we assume that the delivered item may
be of a high or a low quality.

If the delivered item is of low quality, it will be worth αvi to the buyer, while
the item will be worth βvj to the seller, where 0 < α, β ≤ 1. Thus the buyer will
stand to make αvi − γcij , while the seller will gain γcij − βvj . We observe that
this game has a pair of dominating strategies, which prescribes the seller to deliver
a low quality item and the buyer to transfer a partial amount of the money, given
the conditions on the parameters.

Often, online portals implement ways to punish fraudulent users. For example,
eBay immediately suspends sellers against whom a large number of complaints
have been received. We implement a simple punishment mechanism whereby the
gain from a transaction is reduced by pi if only the buyer cheats by transferring
a partial amount of money, pj if only the seller commits fraud by delivering a
low quality item, or a common amount of pij , if both cheat. The punishments (pi,



20 Prashant Doshi et al.

i/j HighQuality (HQ) LowQuality (LQ)
FullMoney (FM) vi − cij , cij − vj αvi − cij , cij − βvj − pj

PartialMoney (PM) vi − γcij − pi, γcij − vj αvi − γcij − pij , γcij − βvj − pij

Table 2 The one-shot online shopping transaction with punishment. The buyer may choose
to transfer the full amount or a partial amount of the money and the seller may elect to
deliver the item of high or low quality (possibly defective).

pj , and pij) depend on the quality of the portal. The one-shot transaction with
punishment is shown in Table 2.
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Fig. 13 (a) Level 1 I-ID of the buyer, i, (b) level 0 IDs of the seller, j, with decision nodes
mapped to the chance nodes, Delivert,1

j and Delivert,2
j , in (a).

Depending on pij , notice that the buyer’s transfer of a partial amount and the
seller’s delivery of a low quality item are no longer a dominating strategy pair.
We show the level 1 I-ID representing the buyer’s decision problem in Fig. 13.
We show two level 0 models of the seller represented using IDs. The models may
represent sellers with different beliefs on the quality of the portal and the buyer’s
actions. For example, one model could be of a mistrusting seller that initially be-
lieves that the portal does not strictly enforce anti-fraud policies and that the buyer
is likely to transfer a partial amount of the money. The other model could be of a
trusting seller.

We expand the level 1 I-ID into an I-DID and show the I-DID in Fig. 14. The
model node, M t

j,0, contains the level 0 DIDs, which may have different beliefs
on the portal quality or the buyer’s behavior. Chance node Delivertj captures the
probability of the seller’s actions when the level 0 DIDs are solved in the model
node.
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Fig. 14 Level 1 I-DID of the buyer. The model node contains level 0 DIDs of the seller
(IDs at horizon 1).

5 Exact Solutions of I-DIDs

The solution to a level l I-DID for agent i expanded over T time steps proceeds
in a bottom-up manner and may be carried out recursively. For the purpose of
illustration, let l = 1 and T = 2. The solution method uses the standard look-
ahead technique, projecting the agent’s action and observation sequences forward
from the current belief state [31], and f nding the possible beliefs that i could
have in the next time step. Because agent i has a belief over j’s models as well,
the look-ahead includes f nding out the possible models that j could have in the
future. Consequently, each of j’s subintentional or level 0 models (represented
using a standard DID) in the f rst time step must be solved to obtain its optimal
set of actions. These actions are combined with the set of possible observations
that j could make in that model, resulting in an updated set of candidate models
(that include the updated beliefs) that could describe the behavior of j in the next
time step. Beliefs over this updated set of candidate models are calculated using
the standard inference methods involving the dependency relationships between
the model nodes as shown in Fig. 7. We note the recursive nature of this solution:
in solving agent i’s level 1 I-DID, j’s level 0 DIDs must be solved f rst. If the
nesting of models is deeper, all models at all levels starting from 0 are solved in a
bottom-up manner.

We brief y outline the recursive algorithm for solving agent i’s level l I-DID
expanded over T time steps with one other agent j in Fig. 15. We adopt a two-
phase approach: Given a two time-slice I-DID of level l with all lower level mod-
els also represented as two time-slice I-DIDs or DIDs (if level 0), the f rst step is
to expand the level l I-DID over T time steps adding the dependency links and the
conditional probability distributions for each node. We particularly focus on estab-
lishing and populating the model nodes (lines 3-11). Note that Range(·) returns the
values (lower level models) of the random variable given as input (model node).
We consider j’s action node At

j (line 5) and the observation node Ot+1

j (line 7).
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I-DID EXACT(level l ≥ 1 I-DID or level 0 DID, horizon T )
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

PopulateM t+1

j,l−1

3. For each mt
j in Range(M t

j,l−1) do
4. Recursively call algorithm with the l − 1 I-DID (or DID)

that represents mt
j and the horizon, T − t

5. Map the decision node of the solved I-DID (or DID), OPT (mt
j), to the

corresponding chance node Aj

6. For each aj in OPT (mt
j) do

7. For each oj in Oj (part of mt
j) do

8. Update j’s belief, bt+1

j ← SE(bt
j , aj , oj)

9. mt+1

j ← New I-DID (or DID) with bt+1

j as the initial belief
10. Range(M t+1

j,l−1
)

∪
← {mt+1

j }

11. Add the model node, M t+1

j,l−1
, and the model update link between

M t
j,l−1 and M t+1

j,l−1

12. Add the chance, decision, and utility nodes for t + 1 time slice and the
dependency links between them

13. Establish the CPDs for each chance node and utility node

Solution Phase
14. If l ≥ 1 then
15. Represent the model nodes, policy links and the model update links

as in Fig. 7 to obtain the DID
16. Apply the standard look-ahead and backup method to solve the expanded DID

(other solution approaches may also be used)

Fig. 15 Algorithm for exactly solving a level l ≥ 1 I-DID or level 0 DID expanded over T
time steps.

Both of them, together with the model node M t
j,l−1

, become parents of the new
model node, M t+1

j,l−1
(line 11). We add the model update link between M t

j,l−1
and

M t+1

j,l−1
. We build the new I-IDs at time t + 1 and construct the I-DIDs by con-

necting relevant chance and decision nodes between time t and t + 1 (line 12).
We specify the CPDs that ref ect the transition and observation functions in the
dynamic IDs (line 13). In the second phase, if the input is an I-DID, we substitute
the policy links, model nodes and the model update links between them in the ex-
panded I-DID with the chance nodes and dependency relationships between them
as per Fig. 7, resulting in a f at DID similar to Fig. 8 (lines 14-15). We may use
the standard look-ahead technique projecting the action and observation sequences
over T time steps in the future, and backing up the expected utility values of the
reachable beliefs (see [36], and [31] for a more introductory description). Other
more eff cient ways of solving DIDs could also be used [6].

Note that we may optimize the implementation of this algorithm by reusing
computations. In particular, j’s level l − 1 models in the model node at time t + 1
will contain the same beliefs as those encountered in the look-ahead search tree
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when the l− 1 I-DID (or DID) is f rst solved. Because solving the I-DID (or DID)
involves computing the solutions at these beliefs as well, we need not recursively
invoke the algorithm for solving j’s models at subsequent time steps. Instead, we
may obtain it from the previously computed (and cached) solutions. In order to
exploit this optimization, line 4 of Fig. 15 is performed only if t = 0, otherwise
the previously computed solutions are utilized at subsequent time steps. These
intermediate solutions should be stored for later use while performing line 16.

As we mentioned previously, the 0th level models are the traditional DIDs.
Their solutions provide probability distributions over actions of the agent modeled
at that level to I-DIDs at level 1. Given probability distributions over other agents’
actions the level 1 I-DIDs can themselves be solved analogously to DIDs, and pro-
vide probability distributions to yet higher level models. Assume that the number
of models considered at each level is bound by a number, M . Solving an I-DID of
level l is then equivalent to solving O(M l) DIDs. Depending on the values of M

and l, the level l I-DID may be expensive to solve in practice.

5.1 Computational Advantages of I-DIDs over I-POMDPs

I-DIDs explicitly model variable dependencies that are usually hidden in the enu-
merative representations of I-POMDPs. The compactness of I-DIDs makes it fea-
sible to handle domains having multiple variables. For example, in the PG game
we observe that we need to consider joint states of two variables, PrivatePot and
PublicPot. Since PrivatePot and PublicPot have 6 and 11 possible values respec-
tively in our context, we need to enumerate 66 states in the I-POMDP def nition.
Consequently, in the enumerative representation, we need to specify a large tran-
sition table (of size 662 × 2 × 2 numbers since there are two decision options
for each player), which grows exponentially in complexity. In contrast, the I-DID
representation decomposes the complex state into the two variables, PrivatePotti
and PublicPott, and models the dependencies over time. As we see in the I-DID
in Fig. 12, the status of the private pot at time t does not affect the contents of
the public pot at t + 1. In addition, agent j’s actions do not affect the private pot
of i. Consequently, we only need to specify two smaller tables of at most 62 × 2
numbers in the CPD of PrivatePott+1

i and 112 × 2 × 2 numbers in the CPD of
PublicPott+1. The outcome of this more compact representation is that the I-DID
exhibits some computational advantages over the I-POMDP.

Table 3 shows the run times for solving the I-DID and the I-POMDP for
two domains - PG and online shopper’s dilemma. We used the I-DIDs shown in
Figs. 12 and 14, for the two domains respectively. For comparison, we formulate
the I-POMDP def nitions of the two domains as in Section 3.1. Both the I-DIDs
and the I-POMDPs are singly nested with two models of the other initially and
each expanded to a horizon of three. We utilized a reduced version of the PG prob-
lem as our I-POMDP implementation is unable to solve the version with 66 states
and two models of the other agent over a horizon of three.

We observe that the I-DID solves relatively eff ciently in comparison to the
enumerative representation of the I-POMDP for the PG problem. The I-DID ex-
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Problem Representation Runtime
Multiagent I-DIDs 0.547s

PG I-POMDPs 12.166s
Multiagent I-DIDs 0.203s
Shopping I-POMDPs 0.435s

Table 3 Run times for exactly solving both the I-DID and the I-POMDP for PG and online
shopper’s dilemma problems (Pentium 4, 3.0GHz, 1GB RAM, WinXP).

hibits a signif cant computational advantage because it adopts a factored represen-
tation of the state space and exploits the conditional independence when applying
the look-ahead and backup methods during the solution. Further, the computational
improvement is obtained because I-DIDs allow models of j to be also represented
as DIDs. In comparison, for the online shopper’s dilemma, the computational ad-
vantage is not signif cant as the state is simple, represented using a single variable.
The reduced runtime is likely due to a more eff cient implementation of the I-DID.

5.2 Example Solutions

We continue with the illustrations and describe solutions of the example I-DIDs
shown in Section 4.4. A good indicator of the usefulness of formalisms for deci-
sion making such as I-DIDs is the emergence of realistic social behaviors in their
prescriptions. Hence, we focus on settings that simulate conditions suff cient for
the emergence of such behaviors. We show how changes in the parameters of the
problem and the models lead to interesting behaviors.

5.2.1 Followership and Leadership in the Multiagent Tiger Problem We con-
sider a particular setting of the persistent multiagent tiger problem mentioned pre-
viously, in which agent i believes that j’s preferences are similar to its own – both
of them want to get the gold – and j’s hearing is more reliable in comparison to
itself. As an example, suppose that j, on listening can discern the tiger’s location
95% of the times compared to i’s 65% accuracy. Agent i does not have any initial
information about the tiger’s location. In other words, i’s single-level nested belief,
bi,1, assigns 0.5 to each of the two locations of the tiger. In addition, i considers
two models of j, which differ in j’s f at level 0 initial beliefs. According to one
model, j assigns a probability of 0.9 that the tiger is behind the left door, while the
other model assigns 0.1 to that location. These extreme initial beliefs of j allow
j to possibly open a door in the next time step itself. i is undecided on these two
models of j.

If we vary i’s hearing ability (by varying the probabilities in the CPD of the ob-
servation node,Growl&Creak), and solve the corresponding level 1 I-ID, shown in
Fig. 9, expanded over three time steps, we obtain the normative behavioral policies
shown in Fig. 16 that exhibit followership behavior. If i’s probability of correctly
hearing the growls is 0.65, then as shown in the policy in Fig. 16(a), i begins to
conditionally follow j’s actions: i opens the same door that j opened previously iff



Graphical Models for Interactive POMDPs: Representations and Solutions 25

i’s own assessment of the tiger’s location conf rms j’s pick. If i loses the ability to
correctly interpret the growls completely, it blindly follows j and opens the same
door that j opened previously (Fig. 16(b)).
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Fig. 16 Emergence of (a) conditional followership, and (b) blind followership in the third
step in the tiger problem. Behaviors of interest are in bold. “*” is a wildcard, and denotes
any one of the observations.

We observed that a single level of belief nesting – beliefs about the other’s
models – was suff cient for followership to emerge in the tiger problem. However,
the epistemological requirements for the emergence of leadership are more com-
plex. For an agent, say j, to emerge as a leader, followership must f rst emerge in
the other agent i. As we mentioned previously, if i is certain that its preferences
are identical to those of j, and believes that j has a better sense of hearing, i will
follow j’s actions over time. Agent j emerges as a leader if it believes that i will
follow it, which implies that j’s belief must be nested two levels deep to enable it to
recognize its leadership role. Realizing that i will follow presents j with an oppor-
tunity to inf uence i’s actions in the benef t of the collective good or its self-interest
alone.

For example, in the tiger problem, let us consider a setting in which if both
i and j open the correct door, then each gets a payoff of 20 that is double the
original. If j alone selects the correct door, it gets the payoff of 10. On the other
hand, if both agents pick the wrong door, their penalties are cut in half. In this
setting, it is in both j’s best interest as well as the collective betterment for j to
use its expertise in selecting the correct door, and thus be a good leader. However,
consider a slightly different problem in which j gains from i’s loss and is penalized
if i gains. Specif cally, let i’s payoff be subtracted from j’s, indicating that j is
antagonistic toward i - if j picks the correct door and i the wrong one, then i’s loss
of 100 becomes j’s gain. Here, let the tiger persist in its original location with a
probability of 1. Agent j believes that i (incorrectly) thinks that j’s preferences are
those that promote the collective good and that it starts off by believing with 99%
conf dence where the tiger is. Because i believes that its preferences are similar to
those of j, and that j starts by believing almost surely that one of the two is the
correct location (two level 0 models of j), i will start by following j’s actions. We
build the I-ID (shown in Fig. 9) so that agent j is at the top level and expand it
over three time steps. We f rst show i’s normative policy on solving its expanded
I-DID in Fig. 17(a). The policy demonstrates that i will blindly follow j’s actions.
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Since the tiger persists in its original location with a probability of 1, i will select
the same door again.

If j begins the game with a 99% probability that the tiger is on the right, solving
j’s I-DID nested two levels deep, results in two policies one of which is shown in
Fig. 17(b). Even though j is almost certain that OL is the correct action, it will
start by selecting OR, followed by OL. Agent j’s intention is to deceive i who,
it believes, will follow j’s actions, so as to gain $110 in the second time step,
which is more than what j would gain if it were to be honest. Here, j’s expected
reward in the f rst time step is: (0.99×-99)+(0.01×11) = -97.9. Note that i listens
in the f rst time step and incurs a reward of -1, which is subtracted from j’s reward.
Subsequently, when j does OL, the expected reward is: (0.99×110)+(0.01×-110)
= 107.8. Thus, the total of the f rst two steps is 9.9. The second optimal policy
is the non-deceptive one where agent j always opens the left door. After the f rst
two steps, the expected reward of j is 9.9 as well. Note that both policies open the
left door in the last step. Thus, agent j could choose to deceive the other as both
deceptive and non-deceptive policies are equally optimal.
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Fig. 17 Emergence of deception between agents in the tiger problem. Behaviors of interest
are in bold. ‘*’ denotes as before. (a) Agent i’s policy demonstrating that it will blindly
follow j’s actions. (b) One of the two optimal policies. Even though j is almost certain that
the tiger is on the right, it will start by selecting OR, followed by OL, in order to deceive i.
Other optimal policy is to always open the left door, which does not involve deceiving i.

5.2.2 Altruism and Reciprocity in Public Good Problem Behaviors of human
players in empirical simulations of the PG problem differ from the normative
predictions. The experiments reveal that many players initially contribute a large
amount to the public pot, and continue to contribute when the PG problem is
played repeatedly, though in decreasing amounts [5]. Many of these experiments [10]
report that a small core group of players persistently contributes to the public pot
even when all others are defecting. These experiments also reveal that players who
persistently contribute have either altruistic or reciprocal preferences matching ex-
pected cooperation of others.

We formulate a sequential version of the PG problem with punishment men-
tioned previously, from the perspective of agent i. Borrowing from the empirical
investigations of the PG problem [10], we construct level 0 IDs for j that model
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altruistic and non-altruistic types (Fig. 11). Specif cally, our altruistic agent has
a high marginal private return (cj is close to 1) and does not punish others who
defect. On the other hand, the non-altruistic type has a low marginal private return
and punishes defectors. Let xc = 1 and the level 0 agent be punished half the times
it defects. With one action remaining, both types of agents choose to contribute to
avoid being punished. With two actions to go, the altruistic type chooses to con-
tribute, while the other defects. This is because cj for the altruistic type is close to
1, thus the expected punishment, 0.5P > (1−cj), which the altruistic type avoids.
Because cj for the non-altruistic type is less, it prefers not to contribute. With three
steps to go, the altruistic agent contributes to avoid punishment (0.5P > 2(1−cj)),
and the non-altruistic type defects. For greater than three steps, while the altruistic
agent continues to contribute to the public pot depending on how close its marginal
private return is to 1, the non-altruistic type prescribes defection.

We analyzed the decisions of an altruistic agent i (ci = 0.95, P = 0.3, cp = 0)
modeled using a level 1 I-DID expanded over 3 time steps. i ascribes the two level
0 models, mentioned previously, to j (see Fig. 11). If i believes with a probability
1 that j is altruistic, i chooses to contribute for each of the three steps. This be-
havior persists when i is unaware of whether j is altruistic (Fig. 18(a)), and when
i assigns a high probability to j being the non-altruistic type. However, when i

believes with a probability 1 that j is non-altruistic and will thus surely defect, i
chooses to defect to avoid the punishment cost and because its marginal private
return is less than 1. These results demonstrate that the behavior of our altruistic
type resembles that found experimentally. The non-altruistic level 1 agent chooses
to defect regardless of how likely it believes the other agent to be altruistic.
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Fig. 18 (a) An altruistic level 1 agent always contributes. (b) A reciprocal agent i starts off
by defecting followed by choosing to contribute or defect based on its observation of plenty
(indicating that j is likely altruistic) or meager (j is non-altruistic).

We analyzed the behavior of a reciprocal agent type (ci = 0.75, P = 0.3,
cp = 0.03) that matches expected cooperation or defection. The reciprocal type’s
marginal private return is similar to that of the non-altruistic type, however, it ob-
tains a greater payoff when its action is similar to that of the other. We consider
the case when the reciprocal agent i is unsure of whether j is altruistic and be-
lieves that the public pot is likely to be half full. For this prior belief, i chooses
to defect. On receiving an observation of plenty, i decides to contribute, while an
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observation of meager makes it defect (Fig. 18(b)). This is because an observation
of plenty signals that the pot is likely to be greater than half full, which results
from j’s action to contribute. Thus, among the two models ascribed to j, its type is
likely to be altruistic making it likely that j will contribute again in the next time
step. Agent i therefore chooses to contribute to reciprocate j’s predicted action.
An analogous reasoning leads i to defect when it observes a meager pot. With one
action to go, i believing that j contributes, will choose to contribute too to avoid
punishment regardless of its observations.

5.2.3 Mistrust in the Online Shopper’s Dilemma Problem The buyer’s dilemma
in the online shopping problem, described in Section 4.4, is, in part, due to its un-
certainty over the seller’s actions, which in turn are predicated on what the seller
believes about the buyer’s actions. The seller j, mistrusting the buyer i, especially
in a portal that does not strictly enforce anti-fraud policies, may believe that the
buyer will very likely transfer a partial amount of the agreed price. We represent
this situation in a level 0 ID modeling the seller and utilize the following param-
eters: vi = 110, vj = 90, cij = 100, α = 0.8, β = 0.8, and γ = 0.8. We
assume that the punishments for cheating are larger if the portal is of a high qual-
ity (pi = pj = 30 and pij = 15) as compared to a portal that does not strictly
guard against fraud (pi = pj = 25 and pij = 10).

Solution of the level 0 ID expanded over three time steps generates a policy
that prescribes the seller to always deliver a low quality item no matter what the
reviews about the portal indicate. This is because the loss expected by the seller
in delivering a high quality item but receiving a partial amount is more than that
expected from being punished for cheating. On the other hand, for a trusting seller
that very likely believes that the buyer will transfer the full amount of money, the
level 0 ID will prescribe the seller to deliver items of high quality irrespective of
the review of the portal. This is due to the large punishment that the seller expects
if it unilaterally decides to cheat by delivering a low quality item while receiving
the full price. The expected punishment exceeds the gain expected from delivering
a low quality item. Finally, if the seller is uncertain about the behavior of the buyer
and the quality of the portal, it initially delivers a high quality item. Subsequently,
positive or negative reviews about the portal will then guide the seller’s action of
delivering a high or low quality item, respectively.

A buyer modeled using the level 1 I-ID, shown in Fig. 13 and expanded to
three time steps, which is uncertain whether the seller is trusting (delivers high
quality items only) or not, will utilize its observations of the reviews of the portal
to guide its actions. We show the corresponding policy tree in Fig. 19(a). This
behavior persists even when the buyer believes that the seller itself uses the reviews
to guide its actions. However, a mistrusting buyer who believes that the seller is
more likely to be mistrusting will transfer a partial amount of the money the f rst
two times irrespective of the reviews, but will transfer the full amount if the review
of the portal is still good. This is because two good reviews will shift the buyer’s
opinion of the seller to be trusting and consequently will deliver a high quality
item (Fig. 19(b)).
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Fig. 19 (a) A buyer who is uncertain about whether the (level 0) seller is trusting or not
utilizes the portal reviews to condition its actions. (b) Amistrusting buyer who believes that
the seller is likely mistrusting will transfer a partial amount of the money except for the case
where it observes good reviews of the portal twice.

We continue with the analysis by lifting the I-DIDs to one more level, and
administer less punishment on the seller (pj = 19.5 and pij = 3 for a good quality
portal while pj = 19 and pij = 2 for a portal of bad quality). We suppose that a
seller modeled using an I-DID at level 2 believes that the buyer (at level 1) follows
the policy given in Fig. 19(a). As we mentioned before, this behavior of the buyer
arises because the buyer is uncertain of whether the seller (at level 0) is trusting or
not. If we consider a seller who strongly prefers to deliver a low quality item if the
buyer transfers a full amount (regardless of the punishment incurred), the seller
adopts a policy that it believes will deceive the buyer into likely transferring the
full amount while it transfers a low quality item.We show the corresponding policy
tree of the seller in Fig. 20. We f rst note that the seller gains the most if it delivers
a low quality item while the buyer transfers the full amount. Notice that despite the
seller standing to lose money immediately, it decides to deliver a high quality item
while it expects the buyer to transfer a partial amount of money. This is followed by
the delivery of another high quality item. Both these actions are deceptive as they
serve to mislead the buyer (through its observations) into thinking that the portal
is likely a good one, which causes the buyer to likely transfer the full amount in
the f nal step. The seller expecting this delivers a low quality item in the last step.

6 Approximate Solutions of I-DIDs

Because models of the other agent, j, are included as part of the model node in i’s
I-DID, solution of the I-DID suffers from not only the high dimensionality of the
state space due to the possibly large number and complexity of models of j, but
also the curse of history responsible for an exponential number of candidate mod-
els of j over time. We focus on mitigating the impact of these factors by holding
constant the number of candidate models of j in the model node of the I-DID, at
each time step 4. In the following section, we show an approach for maintaining a
constant number of models of the other agent over time.

4 We do not focus on approximating the standard inference and dynamic programming
techniques used in solving DIDs. See [25] for such an effort.
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Fig. 20 Deceptive behavior of the seller modeled using a level 2 I-DID in the shopping
problem. Though the seller expects the buyer to transfer a partial amount of money, it de-
livers high quality items. This misleads the buyer into believing that the portal is of a high
quality and consequently transfers the full amount of money. At this point, the seller delivers
a low quality item incurring the maximum prof t.

6.1 Model Clustering

We explore an approximation technique based on clustering the agent models and
selecting K, where 0 < K � M , representative models from the clusters. In
order to initiate clustering, we begin by identifying the initial means around which
the models will be clustered. The selection of the initial means is crucial as we
wish to select them minimally and avoid discarding models that are behaviorally
distinct from the representative ones.

6.1.1 Selecting the Initial Means For the sake of illustration, we assume that the
models of j are intentional and differ only in their beliefs. Our arguments may be
extended to models that differ in their frames and subintentional models as well.
In order to selectively pick 0 < K � M models of j, we begin by identifying the
behaviorally equivalent regions of j’s belief space [30]. These are regions of j’s
belief simplex in which the beliefs lead to an identical optimal policy. As a simple
example, we show in Fig. 21 the behaviorally equivalent regions of j’s level 0
belief simplex for the tiger problem mentioned in Section 5.2. Here j’s hearing is
85% accurate. The agent opens the right door (OR) if its belief that the tiger is
behind the right door, P(TR), is less than 0.1. It will listen (L) if 0.1 < P(TR) <

0.9 and open left door (OL) if P(TR)> 0.9. Therefore, each of the optimal policies
spans over multiple belief points. For example, OR is the optimal action for all
beliefs in the set [0–0.1). Thus, beliefs in [0–0.1) are equivalent to each other in
that they induce the same optimal behavior. However, notice that at P(TR) = 0.1,
the agent is indifferent between OR and L.

We select the initial means as those that lie on the intersections of the behav-
iorally equivalent regions. This allows models that are likely to be behaviorally
equivalent to be grouped on each side of the means. We label the intersection
points as sensitivity points (SPs) and def ne them below.

Def nition 2 (SP) Let bj,l−1 be a level l−1 belief of agent j and OPT(〈bj,l−1, θ̂j〉)
be the set of optimal policies for this belief. Then bj,l−1 is a sensitivity point (SP),
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Fig. 21 Horizon 1 solution of j’s level 0 model in the tiger problem. Note the belief ranges
corresponding to different optimal actions.

if for any ε > 0, there exists a belief, b′j,l−1
s.t. ||bj,l−1 − b′j,l−1

||1 < ε and
OPT(〈bj,l−1, θ̂j〉) 6= OPT(〈b′j,l−1

, θ̂j〉).

Referring to Fig. 21, P(TR) = 0.1 is an SP because even inf nitesimally small
deviations from 0.1 lead to either OR or L as the optimal action, while at 0.1 the
agent is indifferent between the two.

In order to compute the SPs, we observe that they are the beliefs at the non-
dominated intersection points (or lines) between the value functions of pairs of
policy trees. The linear program (LP) in Table 4 provides a straightforward way
of computing the SPs. If the intersections are lines, then the LP returns a point on
this line. For each pair of possible policies of j, π′

j and π′′
j as input, we solve the

LP in Table 4.

LP SP (π′
j ,π′′

j ,Πj)

Objective: Constraints:
maximize τ ∀πj ∈ Πj/{π

′
j , π

′′
j }

Variable: bj,l−1 · V alj,l−1(π
′
j)− bj,l−1 · V alj,l−1(πj) ≥ τ

bj,l−1 bj,l−1 · V alj,l−1(π
′
j)− bj,l−1 · V alj,l−1(π

′′
j ) = 0

bj,l−1 · 1 = 1

Table 4 LP for exact computation of SPs.

If τ ≥ 0, then the belief, bj,l−1, is a SP. Here, Πj is the space of all hori-
zon T policy trees, which has the cardinality O(|Aj |

2|Ωj |
T

). The computation of
the value function, V alj,l−1(·), requires solutions of agent i’s level l − 2 I-DIDs.
These may be obtained exactly or approximately; we may recursively perform the
model clustering and selection to approximately solve the I-DIDs, as outlined in
this section. The recursion bottoms out at the 0th level where the DIDs may be
solved exactly. If there are at most K models at each level, then we need solve
O(Kl−1) models to obtain the value function.

The LP needs to be solved O(|Aj |
4|Ωj |

T

) times to f nd the SPs exactly, which
is computationally expensive. We approximate this computation by randomly se-
lecting K policy trees from the space of policies and invoking LP SP (π′

j , π′′
j ,
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ΠK
j ), where ΠK

j is the reduced space of K policy trees, and π′
j , π

′′
j ∈ ΠK

j . Com-
putation of the set of new SPs, denoted by SPK , requires the solution of O(K2)
reduced LPs allowing computational savings.

In addition to the sensitivity points, we may also designate the vertices of the
belief simplex as the initial means. This allows models with beliefs near the pe-
riphery of the simplex and away from the SPs, to be grouped together.

With each mean, say the nth SP in SPK , we associate a cluster,Mn
j,l−1

, of j’s
models. The models inMn

j,l−1
are those with beliefs that are closer to the nth SP

than any other, with ties broken randomly. One measure of distance between belief
points is the Euclidean distance, though other metrics such as the L1 may also be
used.

6.1.2 Iterative Clustering The initial clusters group together models of the other
agent possibly belonging to multiple behaviorally equivalent regions. Addition-
ally, some of the SPK may not be candidate models of j as believed by i. In
order to promote clusters of behaviorally equivalent models and segregate the non-
behaviorally equivalent ones, we update the means using an iterative method often
utilized by the k-means clustering approach [22].

For each cluster, Mn
j,l−1

, we recompute the mean belief of the cluster and
discard the initial mean, SPn

K , if it is not in the support of i’s belief. The new mean
belief of the cluster, b̄j,l−1, is:

b̄j,l−1 =

∑
bj,l−1∈Bn

j,l−1

bj,l−1

|Mn
j,l−1

|
(4)

Here, the summation denotes additions of the belief vectors, Bn
j,l−1

is the set of
beliefs in the nth cluster, and |Mn

j,l−1
| is the number of models in the nth cluster.
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Fig. 22 An illustration of the iterative clustering method. The gray vertical lines are the
belief points in the models while the black ones are the means. The SPs and the vertices
of the belief simplex form the initial means. Notice the movement of the means over the
iterations. Once the means have converged, we select K=10 models.

Next, we recluster the models according to the proximity of their beliefs to
the revised means. Specif cally, models are grouped with the mean to which their
respective beliefs are the closest, and all ties are broken randomly. The steps of re-
computing the means (Eq. 4) and reclustering using the revised means are repeated



Graphical Models for Interactive POMDPs: Representations and Solutions 33

until convergence ie. the means no longer change. Intuitively, this iterative tech-
nique converges because over increasing iterations less new models will be added
to a cluster, thereby making the means gradually invariant. We illustrate example
movements of the means and clusters of beliefs over multiple iterations in Fig. 22.

6.1.3 Model Selection Given the stable clusters, we select a total of K represen-
tative models from them. Depending on its population,the nth cluster contributes,
kn =

|Mn
j,l−1|

M × K (rounded off to the f oor integer) models to the set. The kn

models whose beliefs are the closest to the mean of the cluster are selected for in-
clusion in the set of models that are retained. Remaining models in the cluster are
discarded. The selected models provide representative behaviors for the original
set of models included in the cluster.

We compose the three steps of (i) identifying initial means, (ii) iterative clus-
tering, and (iii) selecting K models in the algorithm KModelSelection shown in
Fig. 23.

KModelSelection (Mj,l−1, H , K)
Initial Means
1. Randomly pick K horizon H policy trees and invoke LP SP to
obtain the initial means

2. Means0← {SP 1
K , SP 2

K , . . ., SP n
K }

3. For i from 1 to n do
4. Mi

j,l−1← {SP i
K} /* Initialize clusters*/

5. For each mj,l−1 = 〈bj,l−1, θ̂j,l−1〉 in Mj,l−1 do
6. SP i

K ← argmin
SPK∈Means0 ||SPK − bj,l−1||1

7. Mi
j,l−1

∪
← mj,l−1

8. For i from 1 to n do
9. Mi

j,l−1

−
← {SP i

K} if SP i
K is not in Mj,l−1

Iteration
10. Repeat
11. For i from 1 to n do
12 Recompute the mean of each cluster (Eq. 4)
13. For each mj,l−1 = 〈bj,l−1, θ̂j,l−1〉 in Mj,l−1 do
14. b̄i

j,l−1← argminb̄j,l−1
||b̄j,l−1 − bj,l−1||1

15. Mi
j,l−1

∪
← mj,l−1

16. Until no change in the means
Selection
17. For i from 1 to n do

18. ki ←
|Mi

j,l−1
|

|Mj,l−1|
×K

19. Sort the models in cluster i using distance from mean
20. MK

∪
← top ki models

21. ReturnMK

Fig. 23 Algorithm for clustering and selecting K models.
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The algorithm for KModelSelection takes as input the set of models to be
pruned, Mj,l−1, current horizon H of the I-DID, and the parameter K. We com-
pute the initial means – these are the sensitivity points, SPK , obtained by solving
the reduced LP of Table 1 (line 1; vertices of the belief simplex may also be added).
Each model in Mj,l−1 is assigned to a cluster based on the distance of its belief
to a mean (lines 2-9). The algorithm then iteratively recalculates the means of the
clusters and reassigns the models to a cluster based on their proximity to the new
means of the clusters. These steps (lines 10-16) are carried out until the means of
the clusters no longer change. Given the stabilized clusters, we calculate the con-
tribution, kn, of the nth cluster to the set K of models (line 18), and pick the kn

models from the cluster that are the closest to the mean (lines 19-20).

I-DID APPROX(LEVEL l ≥ 1 I-DID OR LEVEL 0 DID, T , K)
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

PopulateM t+1

j,l−1

3. For each mt
j in Range(M t

j,l−1) do
4. Recursively call algorithm with l − 1 I-DID (or DID)

that represents mt
j , horizon T − t and K

5. Map the decision node of the solved I-DID (or DID), OPT (mt
j), to the

chance node Aj

6. For each aj in OPT (mt
j) do

7. For each oj in Oj do
8. Update j’s belief, bt+1

j ← SE(bt
j , aj , oj)

9. mt+1

j ← New I-DID (or DID) with bt+1

j as the initial belief
10. Range(M t+1

j,l−1
)

∪
← {mt+1

j }

Approximate Model Space
11. Range(M t+1

j,l−1
)← KModelSelection(Range(M t+1

j,l−1
, T − t, K))

12. Add the model node, M t+1

j,l−1
, and the model update link between M t

j,l−1

and M t+1

j,l−1

13. Add the chance, decision, and utility nodes for t + 1 time slice and the
dependency links

14. Establish the CPDs for each chance node and utility node

Solution Phase
15. If l ≥ 1 then
16. Represent the model nodes, policy links and the model update links

as in Fig. 7 to obtain the DID
17. Apply the standard look-ahead and backup method to solve the expanded DID

(other solution approaches may also be used)

Fig. 24 Algorithm for approximately solving a level l ≥ 0 I-DID using model clustering.

The models in the model node of i’s I-DID, M t+1

j,l−1
, are pruned to include just

theK models. These models form the values of the chance node,Mod[Mj ] in time
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step t+1. We show the algorithm for approximately solving I-DIDs in Fig. 24. The
algorithm is a slight variation of the one in Fig. 15 that solves I-DIDs exactly. In
particular, on generating the candidate models in the model node, M t+1

j,l−1
, during

the expansion phase (lines 3-9), we cluster and select K models of these using the
procedureKModelSelection. Notice that models at all levels will be clustered and
pruned. We note that our approach is more suited to situations where agent i has
some prior knowledge about the possible models of others, thereby facilitating the
clustering and selection.

6.2 Discussion

Although we need not recursively solve models of agent j at subsequent time steps
in the I-DID since we could obtain their solutions from previous computations (see
Section 5), clustering provides signif cant improvements. Specif cally, it mitigates
the impact of the curse of dimensionality affecting agent i and the curse of history
aff icting j by reducing the number of models in the model node, at each time
step and at every nesting level. The number of models otherwise increases expo-
nentially. Hence, this saves on the size of the interactive state space. Furthermore,
because typically,K � M , it helps reduce the space of models that are considered
initially and thereby in subsequent time steps as well. All of this helps speed up the
solution of I-DIDs and makes it possible to evaluate I-DIDs for longer horizons.

We selected the initial means as those that lie on the intersections of the be-
haviorally equivalent regions. This facilitates groups of behaviorally equivalent
models to be grouped with a mean, and avoids behaviorally disparate models in
the outer regions of a cluster, which may likely get pruned.

Other ways of selecting the means may also seem plausible. For example, the
initial means could be the centers of the behaviorally equivalent regions. However,
for small regions many models that do not belong to the region and hence are not
behaviorally equivalent may also be grouped together, as we illustrate in Fig. 25.
As these models are likely to be further away from the means, they are prone to be
pruned thereby contributing a larger loss in the optimality of the solution. Another
way would be to distribute the initial means uniformly over the belief simplex.
However, this approach is also likely to produce clusters with behaviorally dis-
parate models in the outer regions, because the clusters may span over more than
one behaviorally equivalent region.

� ����������� ���

Fig. 25 Initial means are the centers of behaviorally equivalent regions. Belief points shown
as red dashed lines are grouped into clusters that span multiple behavioral regions. As they
are further away from the means, they will likely be discarded when representative models
are selected.

A problem encountered in k-means clustering is that of the clustering converg-
ing to a local optimum – the f nal clusters may not accurately ref ect the spatial
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distribution of the candidate models. This is in part due to the selection of the ini-
tial means around which the clustering is initiated. As we mentioned previously,
we seek to form clusters of behaviorally equivalent models in order to avoid dis-
carding models that are behaviorally disparate when we select the representative
models from each cluster. In this regard and as demonstrated above, we believe
that our choice of the initial means achieves this objective. Furthermore, as we re-
tain K models, we may end up picking models that were incorrectly clustered as
we increase K. Thus the effect of increasing K is to reduce the inf uence of local
optima. This is aptly demonstrated by our empirical results which show the quality
of the solution approaching optimal as we increase K.

Finally, we note that the idea of behaviorally equivalent models also recently
appeared in [29]. However, Pynadath and Marsella do not provide a method that
involves clustering the models as we do. Furthermore, our approach is generally
applicable to other representations (besides I-DIDs) that model other agents in a
multiagent setting.

7 Computational Savings, Convergence and Error Bound

The computational complexity of solving I-DIDs is primarily due to the large num-
ber of models that must be solved over T time steps. At some time step t, the num-
ber of possible models of the other agent j isM0(|Aj ||Ωj |)

t whereM0 is the num-
ber of models considered initially. The nested modeling further contributes to the
complexity since solutions of each model at level l − 1 requires solving the lower
level l−2 models, and so on recursively down to level 0. Consider anN +1 agent
setting in which the number of models is bounded by M at each level. Solving an
I-DID at level l requires the solutions of O((NM)l) many models. If the models
are intentional, exact solutions of the models are at least NP Complete. This com-
plexity precludes practical implementations of I-DIDs beyond simple problems.
The approximation technique we consider here reduces the complexity by holding
a constant number of K models in the model node. Thus, we only need to solve
O((KN)l) number of models at the f rst time step in comparison to O((MN)l),
where M grows exponentially over time. In general, the setting of K � M offers
a substantial reduction in the computation.

As the set of K retained models differs at each time step, the approximate
value function may not converge asymptotically. We focus on bounding the error
introduced by the approximation technique in the value of the optimal t-horizon
policy tree for j. Here, we bound the error introduced by the approximation tech-
nique given that lower level models are solved exactly. While the usefulness of
the bounds is limited, they are applicable to, for example, level 1 I-DIDs when the
level 0 DIDs are solved exactly.

We bound the error introduced in j’s behavior due to excluding all butK mod-
els at the time step t. Note that the K models are assumed to be solved exactly.
Recall that for some cluster n, we retain the kn models closest to the mean. If
K = M , then we retain all the models and the error is zero. Let MK denote the
set ofK models andM/K denote the set of theM−K models that are pruned. The
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error may be bounded by f nding the model among the K retained models whose
belief is spatially the closest to that of the discarded one. Def ne dK as the largest
of the distances between a pruned model,mj,l−1, and the closest model among the
K selected models: dK = maxmj,l−1∈M/K

minm′

j,l−1
∈MK

||bj,l−1 − b′j,l−1
||1,

where bj,l−1 and b′j,l−1
are the beliefs in mj,l−1 and m′

j,l−1
, respectively. Given

dK , the derivation of the error bound for j proceeds in a manner analogous to that
for point-based value iteration [27], though over the f nite horizon, T , of the I-DID,
as we show below.

Let bj,l−1 be the discarded nested belief of j where the worst error is made:
bj,l−1 = argmax

bj,l−1∈Bj,l−1

|bj,l−1 · α − bj,l−1 · α′|. Here, Bj,l−1 is the space of level

l − 1 beliefs of j, α is the value function associated with the policy tree optimal at
bj,l−1 and α′ is the the value function associated with the policy tree optimal at a
belief, b′j,l−1

, of a retained model that is closest to bj,l−1. Then,

εK = |bj,l−1 · α − bj,l−1 · α
′|

= |(bj,l−1 · α − bj,l−1 · α
′) + (b′j,l−1

· α − b′j,l−1
· α)| (add zero)

≤ |(bj,l−1 · α − bj,l−1 · α
′) + (b′j,l−1

· α′ − b′j,l−1
· α)| (b′j,l−1

· α′ ≥ b′j,l−1
· α)

≤ ||α − α′||∞ · ||bj,l−1 − b′j,l−1
||1 (Hölder inequality)

≤ (Rmax
j − Rmin

j )T × dK

(5)
The error bound in Eq. 5 does not bound the error in agent i’s exact policy due

to the approximation – this depends on the expected behavior of j and not on the
value of j’s policy. It measures the worst-case error in j’s policy introduced by the
approximation technique at some nesting level l. The equation also assumes that
the I-DIDs at the lower levels have been solved exactly. However, as we mentioned
previously, we may use the approximations recursively at all levels of nesting to
approximately solve the I-DIDs. In this case, the bounds shown here may be tighter
than desired.

8 Empirical Results

We implemented the approximation algorithm in Fig. 24 and demonstrate the em-
pirical performance of the model clustering approach on two problem domains:
the multiagent tiger problem (tiger’s location resets if a door is opened) and a
multiagent version of the machine maintenance problem [34], both of which are
described in the Appendix. In particular, we show that the quality of the policies
generated using our method approaches that of the exact policy asK increases. As
there are inf nitely many computable models, we obtain the exact policy by exactly
solving the I-DID given a f nite set of M0 models of the other agent initially. In
addition, we obtain signif cant computational savings, in comparison with the ex-
act method, from using the approximation techniques as indicated by the low run
times.
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Multiagent Tiger Problem
Horizon = 3
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Fig. 26 Performance of the model clustering approach in comparison to the exact solutions
on the multiagent tiger problem (standard deviation shown as vertical lines). As we increase
K, the approximate solutions converge toward the exact. We do not show the exact solutions
for larger values of M0 as they could not be computed.

8.1 Performance Prof les

We begin our empirical analysis by reporting the performance of the model clus-
tering based approximate solutions of I-DIDs. In Figs. 26 and 27, we show agent
i’s average rewards gathered by executing 3 and 4 horizons policies obtained from
solving the level 1 I-DIDs approximately. Each data point here is the average of 50
runs where the true model of the other agent, j, is randomly picked according to
i’s belief distribution over j’s models. Each curve within a plot is for a particular
M0, where M0 denotes the total number of candidate models of j at the f rst time
step. Note that this increases exponentially over time.

We observe from the line plots in Figs. 26 and 27 that as we increase the
number of models retained,K, the policies improve and converge toward the exact.
This remains true for increasingM0 and for both, the multiagent tiger and machine
maintenance problem domains.
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Multiagent Machine Maintenance Problem
Horizon = 3
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Fig. 27 Performance of the model clustering approach in comparison to the exact solutions
on the machine maintenance problem (standard deviations shown as vertical lines). Note
that the two horizontal lines for exact solutions in the top f gure are too close to be dis-
tinguished. As before, the approximate solutions converge toward the exact as we increase
K.

8.2 Runtime Comparison

We show the run times of the exact and approximate approaches (denoted as MC)
in Table 5 which are indicative of the computational savings incurred by prun-
ing the model space to a f xed number of models at each time step in the I-DID.
We observe that the approximation technique demonstrates signif cant speedup in
comparison to the exact solutions. Note that the speedups increase with the num-
ber of horizons. This is because the number of candidate models of the other agent
increases exponentially with time for the exact approach but remains f xed in the
approximation technique. Using the approximation we were able to solve our I-
DIDs up to 8 horizons, while the exact solutions could not be obtained beyond
4 horizons. We expect similar results for deeper levels of strategic nesting of the
models.
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Problem Method Horizons
t=2 t=3 t=4 t=5

Multiagent Exact 14.079s 33.142s 83.644s *
Tiger MC 4.532s 7.110s 10.512s 12.328s

Multiagent Exact 14.234s 35.847s 99.236s *
Machine Maintenance MC 8.500s 12.908s 18.688s 33.219s

Table 5 Run times for exactly and approximately solving the I-DID for different steps. K
and M are equal to 50 and 100 respectively for both approximate and exact approaches
(Pentium 4, 3.0GHz, 1GB RAM, WinXP). * = Exact solutions ran out of memory.

9 Conclusion

We showed how the traditional DIDs may be extended to I-DIDs that enable se-
quential decision making in uncertain multiagent settings. Our graphical represen-
tation of I-DIDs improves on the previous work signif cantly by being transpar-
ent, semantically clear, and capable of being solved using standard algorithms that
target DIDs. I-DIDs extend NIDs to allow sequential decision making over multi-
ple time steps in the presence of other interacting agents. I-DIDs may be seen as
concise representations for I-POMDPs providing a graphical language to exploit
problem structure and carry out decision making as the agent acts and observes
given its prior beliefs.

Because I-DIDs include models of other agents in the representation as well,
solving them is computationally complex. We presented the f rst technique for ob-
taining approximate solutions to I-DIDs which selects a constant number of rep-
resentative models at each time step. Our approach was to reformulate the well-
known k-means clustering method in the context of I-DIDs by strategically ini-
tializing the means and obtaining stable clusters of models in an iterative manner.
Each cluster consists of models that are likely to be behaviorally equivalent. We se-
lect a subset of models from each cluster and update the selected models over time.
The technique signif cantly mitigates the impact of the curse of dimensionality and
reduces the space of agents’ models in the expansion phase without signif cantly
compromising on the solutions of I-DIDs. We provided empirical performances on
the well-known multiagent tiger and a multiagent version of the classical machine
maintenance problems. They show that the approach saves on computations over
the model space.

As spaces of candidate models are often bounded, the true model of the other
agent may not be within the model space. In this context, techniques for identify-
ing models that are relevant in predicting the true behavior are needed. We are in-
vestigating ways of identifying these relevant models using information-theoretic
measures of similarity between observed and predicted behaviors.
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A Multiagent Tiger Problem

Our multiagent tiger problem is a generalization of the well-known single agent
tiger problem [19] to the multiagent setting. It differs from other multiagent ver-
sions of the same problem [24] by assuming that the agents hear creaks as well as
the growls. Creaks are indicative of which door was opened by the other agent(s).
For the sake of simplicity, we restrict ourselves to a two-agent setting, but the
problem is extensible to more agents in a straightforward way.

In the two-agent tiger problem, each agent may open doors or listen. To make
the interaction more interesting, in addition to the usual observation of growls, we
added an observation of door creaks, which depends on the action executed by
the other agent. Creak right (CR) is likely due to the other agent having opened
the right door, and similarly for creak left (CL). Silence (S) is a good indication
that the other agent did not open doors and listened instead. We assume that the
accuracy of creaks is 90%, while the accuracy of growls is 85% as in the single
agent problem. We consider two settings, one in which the tiger persists in its
original location with a probability of 0.95 if any of the agents opened any doors
in the current step, the other in which the tiger location is chosen randomly in the
next time step if a door is opened. We also assume that the agent’s payoffs are
analogous to the single agent version. Note that the result of this assumption is
that the other agent’s actions do not impact the original agent’s payoffs directly,
but rather indirectly by resulting in states that matter to the original agent.

We showed the nested I-DID unrolled over two time steps for the multiagent
tiger problem in Fig. 10. Agent i at level 1 considers M models of agent j of
level 0 which, for example, differ in the distributions over the chance node Tiger
Location. In agent i’s I-DID, we assign the marginal distribution over the tiger’s
location to the CPD of the chance node TigerLocationt

i. In the next time step, the
CPD of the chance node TigerLocationt+1

i conditioned on TigerLocationt
i, At

i,
and At

j is the transition function, shown in Table 6.
We show the CPD of the observation node, Growl&Creakt+1

i , in Table 7.
The CPDs of the observation nodes in level 0 DIDs are identical to the observation
function in the single agent tiger problem.

The decision node At
i includes possible actions of agent i in the scenario such

as listening (L), opening the left door (OL), and opening the right door (OR). The
utility node Ri in the level 1 I-DID relies on both agent’s actions, At

i and At
j , and

the physical states, TigerLocationt
i. We show the utility table in Table 8. The

utility tables for level 0 models are identical to the reward function in the single
agent tiger problem which assigns a reward of 10 if the correct door is opened, a
penalty of 100 if the opened door is the one behind which is a tiger, and a penalty
of 1 for listening.

Finally, the CPD of the chance node Mod[M t+1

j ] in the model node, M t+1

j,l−1
,

ref ects which prior model, action and observation of j results in a model contained
in the model node.



42 Prashant Doshi et al.

〈at
i, a

t
j〉 TigerLocationt

i TL TR
〈OL, ∗〉 TL 0.95 0.05
〈OL, ∗〉 TR 0.05 0.95
〈OR, ∗〉 TL 0.95 0.05
〈OR, ∗〉 TR 0.05 0.95
〈∗, OL〉 TL 0.95 0.05
〈∗, OL〉 TR 0.05 0.95
〈∗, OR〉 TL 0.95 0.05
〈∗, OR〉 TR 0.05 0.95
〈L, L〉 TL 1.0 0
〈L, L〉 TR 0 1.0

(a)

〈at
i, a

t
j〉 TigerLocationt

i TL TR
〈OL, ∗〉 * 0.5 0.5
〈OR, ∗〉 * 0.5 0.5
〈∗, OL〉 * 0.5 0.5
〈∗, OR〉 * 0.5 0.5
〈L, L〉 TL 1.0 0
〈L, L〉 TR 0 1.0

(b)

Table 6 CPD of the chance node TigerLocationt+1

i in the I-DID of Fig. 10 when the
tiger (a) likely persists in its original location on opening doors, and (b) randomly appears
behind any door on opening one.

〈at
i, a

t
j〉 TgrLoct+1

i 〈GL, CL〉 〈GL, CR〉 〈GL, S〉 〈GR, CL〉 〈GR, CR〉 〈GR, S〉
〈L, L〉 TL 0.85*0.05 0.85*0.05 0.85*0.9 0.15*0.05 0.15*0.05 0.15*0.9
〈L, L〉 TR 0.15*0.05 0.15*0.05 0.15*0.9 0.85*0.05 0.85*0.05 0.85*0.9
〈L, OL〉 TL 0.85*0.9 0.85*0.05 0.85*0.05 0.15*0.9 0.15*0.05 0.15*0.05
〈L, OL〉 TR 0.15*0.9 0.15*0.05 0.15*0.05 0.85*0.9 0.85*0.05 0.85*0.05
〈L, OR〉 TL 0.85*0.05 0.85*0.9 0.85*0.05 0.15*0.05 0.15*0.9 0.15*0.05
〈L, OR〉 TR 0.15*0.05 0.15*0.9 0.15*0.05 0.85*0.05 0.85*0.9 0.85*0.05
〈OL, ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6
〈OR, ∗〉 ∗ 1/6 1/6 1/6 1/6 1/6 1/6

Table 7 The CPD of the chance node Growl&Creakt+1

i in the level 1 I-DID.

B Multiagent Machine Maintenance Problem

We extend the traditional single agent based machine maintenance (MM) prob-
lem [34] to a two-agent cooperative version. The original MM problem involved a
machine containing two internal components operated by a single agent. Either one
or both components of the machine may fail spontaneously after each production
cycle (0-fail: no component fails; 1-fail: 1 component fails; 2-fail: 2 components
fail). If an internal component has failed, then there is some chance that when op-
erating upon the product, it will cause the product to be defective. An agent may
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〈at
i, a

t
j〉 TL TR

〈OR, OR〉 10 -100
〈OL, OL〉 -100 10
〈OR, OL〉 10 -100
〈OL, OR〉 -100 10
〈L, L〉 -1 -1
〈L, OR〉 -1 -1
〈OR, L〉 10 -100
〈L, OL〉 -1 -1
〈OL, L〉 -100 10

Table 8 Reward functions of agents i and j for the multiagent tiger problem.

choose to manufacture the product (M) without examining it, examine the product
(E), inspect the machine (I), or repair it (R) before the next production cycle. On
an examination of the product, the subject may f nd it to be defective. Of course,
if more components have failed, then the probability that the product is defective
is greater.

We design a level 1 I-DID for the multiagent MM problem in Fig. 28. We
consider M models of agent j at level 0 which differ in the probability that j

assigns to the chance node Machine Failurej . In the I-DID, the chance node,
MachineFailuret+1

i , has incident arcs from the nodes MachineFailuret
i, At

i,
and At

j . The CPD of the chance node is shown in Table 9.
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Fig. 28 Level 1 I-DID of agent i for the multiagent MM problem. The hexagonal model
node contains M level 0 DIDs (or IDs at horizon 1) of agent j.

For the observation chance node, Defectivet+1

i , we associate the CPD shown
in Table 10. Note that arcs from MachineFailuret+1

i and the nodes, At
i and At

j ,
in the previous time step are incident to this node. The observation nodes in the
level 0 DIDs have CPDs that are identical to the observation function in the original
MM problem.
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〈at
i, a

t
j〉 Mch Failt+1

i 0-fail 1-fail 2-fail
〈M/E,M/E〉 0-fail 0.81 0.18 0.01
〈M/E,M/E〉 1-fail 0.0 0.9 0.1
〈M/E,M/E〉 2-fail 0.0 0.0 1.0
〈M,I/R〉 0-fail 1.0 0.0 0.0
〈M,I/R〉 1-fail 0.95 0.05 0.0
〈M,I/R〉 2-fail 0.95 0.0 0.05
〈E,I/R〉 0-fail 1.0 0.0 0.0
〈E,I/R〉 1-fail 0.95 0.05 0.0
〈E,I/R〉 2-fail 0.95 0.0 0.05
〈I/R,*〉 0-fail 1.0 0.0 0.0
〈I/R,*〉 1-fail 0.95 0.05 0.0
〈I/R,*〉 2-fail 0.95 0.0 0.05

Table 9 The CPD of the chance node, Machine Failuret+1

i , in the level 1 I-DID of agent i.

〈at
i, a

t
j〉 Mch Failt+1

i not-defective defective
〈M,M/E〉 * 0.5 0.5
〈M,I/R〉 * 0.95 0.05
〈E,M/E〉 0-fail 0.75 0.25
〈E,M/E〉 1-fail 0.5 0.5
〈E,M/E〉 2-fail 0.25 0.75
〈E,I/R〉 * 0.95 0.05
〈I/R,*〉 * 0.95 0.05

Table 10 The CPD of the chance node, Defectivet+1

i .

The decision node, Ai, consists of agent i’s actions including manufacture

(M), examine (E), inspect (I), and repair (R). It has one information arc from
the observation node Defectivet

i indicating that i knows the examination results
before making the choice. The utility nodeRi is associated with the utility table in
Table 11.

The CPD of the chance node,Mod[M t+1

j ], in the model node,M t+1

j,l−1
, ref ects

which prior model, action and observation of j results in a model contained in the
model node.
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