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Abstract Planning for ad hoc teamwork is challenging because it involves agents collabo-
rating without any prior coordination or communication. The focus is on principled meth-
ods for a single agent to cooperate with others. This motivates investigating the ad hoc
teamwork problem in the context of self-interested decision-making frameworks. However,
agents engaged in individual decision making in multiagent settings face the task of having
to reason about other agents’ actions, which may in turn involve reasoning about others. An
established approximation that operationalizes this approach is to bound the infinite nest-
ing from below by introducing level 0 models. For the purposes of this study, individual,
self-interested decision making in multiagent settings is modeled using interactive dynamic
influence diagrams (I-DID). These are graphical models with the benefit that they naturally
offer a factored representation of the problem allowing agents to ascribe dynamic models to
others and reason about them.

We demonstrate that an implication of bounded, finitely-nested reasoning by a self-
interested agent is that we may not obtain optimal team solutions in cooperative settings if it
is part of a team. We address this limitation by including models at level 0 whose solutions
involve reinforcement learning. We show how the learning is integrated into planning in
the context of I-DIDs. This facilitates optimal teammate behavior, and we demonstrate its
applicability to ad hoc teamwork on several problem domains and configurations.
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1 Introduction

Ad hoc teamwork – also called impromptu or spontaneous teamwork [20] – involves a team
of autonomous and artificial agents with differing beliefs and capabilities coming together
in cooperation toward a common goal without any prior coordination or communication
protocols [68]. While the problem pertains to teamwork, the challenge is to essentially build
an autonomous agent whose decision making involves reasoning about interactions with
other agents. This necessitates understanding how others in the ad hoc team could be behav-
ing, how their behaviors change over time in extended interactions, and the implications of
others’ behaviors.

The preclusion of prior coordination and commonalities as much as possible severely
challenges planning in ad hoc settings. For example, well-known cooperative planning frame-
works such as the communicative multiagent team decision problem [62] and the decentral-
ized partially observable Markov decision process (DEC-POMDP) [16] utilize centralized
offline planning and distribution of local policies among agents that have common initial
beliefs. This presumed commonality makes these frameworks implausible for use in ad hoc
settings. This is unfortunate because much advance has been achieved in the last decade in
scaling the planning as modeled by DEC-POMDPs to well-sized teams of agents situated in
large problems [11,26,31,49,54,57].

A key focus of ad hoc teamwork is on how an agent should behave online as a spon-
taneous teammate, which informs previous approaches toward planning. This includes an
algorithm for online planning in ad hoc teams [74], OPAT, that solves a series of stage
games assuming that other agents are optimal. Albrecht and Ramamoorthy [8] model the
uncertainty about other agents’ types and construct a Harsanyi-Bayesian ad hoc game that is
solved online using reinforcement learning. While these early methods take important steps,
they assume that the physical states and actions of others are perfectly observable. These
approaches and their outcomes are informing our understanding of how planning should be
carried out in ad hoc situations, but they do not apply to domains such as robotics where the
physical state is not perfectly observed due to say, sensory noise.

The focus on individual agents’ behaviors motivates that we situate the problem in the
context of individual decision-making frameworks. Team reward is then some additive func-
tion of the individual agent rewards [5,29,41,50,72]. In this regard, recognized frameworks
such as the interactive POMDP (I-POMDP) [39], its online and graphical counterpart, in-
teractive dynamic influence diagram (I-DID) [36], and I-POMDP Lite [44] take a decision-
theoretic approach to planning and model the individual agent as being self interested. I-
POMDPs and I-DIDs provide formal models that are sufficiently general to accommodate
a wide spectrum of planning problems [32] including that of ad hoc coordination. These
frameworks allow considerations of partial observability of the state and uncertainty over
the models and types of other agents with minimal prior assumptions. Of course, this gener-
ality comes with the expense of increased computational complexity. Indeed, Albrecht and
Ramamoorthy [8] note the suitability of these frameworks to the problem of ad hoc team-
work but find the complexity challenging. We ground the investigations presented in this
article using I-DIDs because they naturally provide for a factored representation that is also
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suited for online planning. Furthermore, recent advances on model equivalences [75] and
use of streaming multi-processors [2] allow I-DIDs to move beyond toy-scale problems. 1

Self-interested agents that reason about others’ behaviors (as in I-DIDs) should consider
the possibility that others could be reasoning about others’ as well. This simple observa-
tion gives rise to complex epistemology that continues to receive much attention in various
branches of game theory such as epistemic [13,22] and behavioral [25,24], as well as in
multiagent systems [36,39,7,75]. Toward making the ensuing hierarchical belief systems
computationally operational, varied effort has converged toward capping the belief system
from below by introducing level-0 models. Wright and Lleyton-Brown [73] survey various
level-0 models employed in behavioral game theory and propose new meta models.

Level-0 models in I-DIDs are single-agent DIDs that do not reason about others. Agents
at a strategy level l are capable of modeling others at lower levels (up to l − 1) only. There-
fore, agents which are more strategic are capable of modeling others at deeper levels (i.e., all
levels less their own strategy level l), but are always only boundedly optimal. As such, these
agents could fail to predict the strategy of a more sophisticated opponent. We show that a
consequence of this strategic boundedness is that the individual agent may not behave as an
optimal teammate. Intuitively, this is because the true benefit of cooperative actions often
hinges on others performing supporting actions, which by themselves may not be highly
rewarding to the agent. This finding is one of the first insights into how a specific form of
bounded rationality negatively impacts team planning.

To address this, we augment I-DIDs by additionally attributing a new type of level-0
model. This type distinguishes itself by utilizing reinforcement learning (RL) either online
or in simulation to discover possible collaborative policies that a level-0 agent may execute.
In essence, this allows an individual agent at a lower level to learn the existence of other
agents that are more sophisticated, and consider them to be a part of the world dynamics.

In this article, we seek to shape the answer to a general question: Could strategic agents
planning and acting individually in a multiagent setting each using, say the boundedly-
optimal I-DID, engage in comprehensive team behavior? To the best of our knowledge this
broad question remains open, and its answer is challenging. Toward this question, the con-
tributions of this article are three-fold:

1. We demonstrate using examples that a boundedly-optimal and self-interested agent may
not behave as a teammate despite sharing its payoff function with others. Consequently,
these agents are generally ill suited for participation in ad hoc teams.

2. We show that true team behavior emerges when the reasoning ability at base levels is
enhanced via learning. In this regard, we demonstrate globally optimal teammate solu-
tions when agents are modeled in finitely-nested augmented I-DIDs where traditional
I-DIDs fail. Consequently, this work is of significance because it may provide us a way
of generating optimal teammate behavior in boundedly rational frameworks. Until now,
these have been utilized for noncooperative settings, which provides a principled way to
solving ad hoc teamwork problems.

3. We demonstrate the applicability of augmented I-DIDs to ad hoc settings and show its
effectiveness for varying types of teammates.
Specifically, ad hoc teamwork is studied in domains where agents do not observe their
physical states nor actions of others perfectly, and neither do they communicate. The
agents are Bayesian, self-interested and boundedly-optimal as defined previously. In
reference to the categorization in Stone et al., we assume that the agents share a common

1 A GUI-based software tool called Netus is freely available from http://tinyurl.com/mwrtlvg
for designing I-DIDs.
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goal and receive identical reinforcements as they act simultaneously [68]. Analogous to
Wu et al. [74], we experiment with multiple well-known cooperative domains exhibiting
these settings. Subsequently, we implement a generalized version of OPAT that accounts
for the partial observability and use that as a baseline for comparison with augmented
I-DIDs.

This article is structured as follows. In Section 2, we analyze and differentiate the related
work. In Section 3, we briefly review the framework of I-DIDs that underlies our work and
discuss its relevance in the context of ad hoc settings. In Section 4, we illustrate the challenge
faced by boundedly-rational agents planning and acting individually toward engaging in
team behavior. We also present a new level-0 model with reasoning capabilities that are
enhanced by utilizing reinforcement learning. We also present a revised method to solve
the augmented I-DIDs. Furthermore, to handle computational explosion, we propose and
illustrate a principled way to generate a reduced space of collaborative level-0 models and
retain top-K of these models. Experimental results in Section 5 demonstrate the emergence
of team behavior in I-DIDs and their applicability to ad hoc settings in three well-known
cooperative ad hoc domains. Section 6 concludes this paper with a discussion and future
lines of work. An appendix provides illustrations of I-DIDs for the various domains used in
the experiments.

2 Related Work

Multiagent teamwork is a long standing and widely studied area of research. Relevant to
the contributions in this article are the decision-theoretic frameworks that have significantly
driven recent advancements in this area. Key among these are the multiagent (PO)MDP [19,
12], decentralized (PO)MDP [16] and their specializations such as the networked-distributed
POMDP [46]. These frameworks model traditional teamwork as sequential decision making
differing in the structure of the team plan (and whether the state is partially observable). All
teammates are assumed to be identical in their capabilities, preferences and beliefs.

Recently, interest in spontaneously coordinating with others as part of an ad hoc (or
impromptu) multiagent team is building, driven by applications such as robot soccer [21]
and disaster response. Requirements for this type of coordination include disallowing any
prior coordination or relying on commonalities because potential teammates may not be
known in advance. These requirements defeat the traditional team planning frameworks and
make the coordination problem challenging because team strategies cannot be determined
a’priori [68].

Autonomy remains a key attribute, and agents are expected to learn and adapt to the
behaviors of others on the fly and still function effectively as teammates [15,70]. Opponent
modeling techniques – initially explored in game theory – are useful in learning the behavior
of others from the interaction history as in fictitious play [23], rational learning [45] and
case-based reasoning [38]. The focus on how an agent should behave online as an ad hoc
teammate informs previous approaches toward the planning. This includes an algorithm for
online planning in ad hoc teams (OPAT) [74] that solves a series of stage games assuming
that other agents are optimal with the utility at each stage computed using Monte Carlo
tree search. Albrecht and Ramamoorthy [6,8] generalize Bayesian games [43] to model the
uncertainty about other agents’ user-defined types and construct a Harsanyi-Bayesian ad
hoc coordination game (HBA) that is solved online using learning. However, establishing
common knowledge of the prior distribution over types to facilitate the solution of HBAs is
problematic in ad hoc settings. Albrecht et al. [9] further analyze the convergence conditions
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of various posterior belief formulations to understand how closely the user-defined type
spaces must approximate the true type spaces in order for HBA to effectively solve its task.
Continuing on this line of research, Albrecht et al. [10] also propose an algorithm to quantify
the correctness of predefined type spaces. While these approaches take important steps, they
assume that the physical states and actions of others are perfectly observable, which often
may not apply.

Ad hoc teamwork has been studied from other perspectives as well such as first identify-
ing the target task(s) before determining the strategy adopted by the teammates [20] because
the agent may not always know beforehand the task it is expected to complete. Our work,
like many of the existing studies in ad hoc teamwork [4,27,69], assumes that the agents
are aware of the tasks they are supposed to execute and does not consider the problem of
identifying it.

Methods for ad hoc planning in this article are presented in the context of I-DIDs, which
differ from other frameworks such as DEC-POMDPs [65] and multiagent influence dia-
grams (MAIDs) [48], in that they take the perspective of an individual agent to sequential
decision making in multiagent settings, and do not assume common knowledge of beliefs
between multiple agents.

As expected, solving I-DIDs (and I-POMDPs) tends to be computationally complex as
they acutely suffer from both the curses of dimensionality and history [36,39,60]. Given
this complexity, a plethora of principled approaches have been proposed for scaling exact
and approximate I-DID solutions [28,33–35,61,63,75,76]. These methods primarily focus
on reducing the dimensionality of the state space by exploiting behavioral equivalence (BE)
among models that prescribe identical behavior. Models that are BE are then clustered and
a single representative model for each equivalence class is picked. For example, Doshi and
Zeng [35] minimize the model space by updating only those models that lead to behaviorally
distinct models at the next time step. This approach, called discriminative model updates,
speeds up solutions of I-DIDs considerably.

Like I-DIDs (and I-POMDPs), Agmon et al. [3] model uncertainty in behavior of other
agents using recursive modeling to achieve ad hoc teamwork, but do so in the context of a
simultaneous action repeated game. However, the goal of the ad hoc agent here is to lead
its teammates, whose behaviors are given, to a joint action that results in higher team util-
ity compared to what could be achieved without its intervention. This work reassures our
argument that the true benefit of cooperative actions often hinges on others performing sup-
porting actions, which by themselves may not be highly rewarding to the agent. We take
this to the next level and seek to achieve true team behavior despite the bounded rationality
limitations on finitely nested hierarchical systems by introducing enhanced level-0 models.

3 Background: Interactive DIDs

The decision making processes for multiagent settings in a stochastic partially observable
environment could be formalized as decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs), interactive POMDPs (I-POMDPs) or others [32]. Dec-POMDPs
model cooperative agents as a team who share joint beliefs over states and a local policy is
provided to each agent. I-POMDPs take the perspective of an individual agent operating in
presence of other self-interested agents. They are suitable for both cooperative and agnostic
settings.

I-DIDs are the graphical counterparts of I-POMDPs. Interactive influence diagrams (I-
IDs) and their dynamic counterparts, I-DIDs, seek to explicitly model the structure that is
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often present in real-world problems by decomposing the situation into chance and deci-
sion variables, and the dependencies between the variables. I-DIDs generalize dynamic IDs
(DIDs), which are graphical counterparts of POMDPs, to multiagent settings in the same
way that I-POMDPs generalize POMDPs. Analogous to DIDs, I-DIDs compactly represent
the decision problem by mapping various variables into chance, decision and utility nodes.
However, we consider more complex multiagent interactions that are extended over time.
So, predictions about others’ future actions must also be made by solving models that need
to be updated as the agents act and observe. I-DIDs allow the explicit representation of other
agents’ models as the values of a special model node. Other agents’ models and the original
agent’s beliefs over these models are then updated over time. Specifically, the update of the
agent’s belief over the models of others as the agents act and receive observations is denoted
using a special link called the model update link that connects the model nodes between
time steps.

Frameworks such as I-DIDs are significant in that they operationalize hierarchical be-
lief systems for use in decision making, which have received extensive mathematical treat-
ment in game theory [1,13,52]. They also contribute to a growing line of work on graph-
ical models for multiagent decision making that includes multiagent influence diagrams
(MAID) [47], and more recently, networks of influence diagrams (NID) [37]. MAIDs objec-
tively analyze the game and efficiently compute the Nash equilibrium profile by exploiting
the independence structure. NIDs extend MAIDs to include agents’ uncertainty over the
game being played and over models of other agents. However, MAIDs provide an analy-
sis from an external viewpoint and the applicability of both is limited to static single play
games. MAIDs do not allow us to define a distribution over non-equilibrium behaviors of
other agents. In comparison, I-DIDs provide a way to exploit predicted non-equilibrium be-
havior. Thus, MAIDs and hence NIDs, are not amenable to modeling decision making in
multiagent settings from an individual agent’s perspective.

I-DIDs are naturally suited for planning in ad hoc multiagent settings because they take
a decision-theoretic approach to planning and model the individual agent as being self-
interested. A factored representation of the domain as utilized by I-DIDs promotes tractabil-
ity in online planning [36]. Considerations of partial observability of the state and others’
actions lead to uncertainty over the models of other agents with minimal prior assumptions.
In this respect, I-DIDs allow us to maintain models of others, maintain distribution over
these models, and update them over time. It explicitly models others as intentional agents
and reasons about their behavior. Consequently, I-DIDs can quickly and spontaneously adapt
to changing behaviors of teammates. We sketch I-DIDs below and refer readers to [75] for
more details.

3.1 Representation

A traditional DID models sequential decision making for a single agent by linking a set
of chance, decision and utility nodes over multiple time steps [71]. To consider multiagent
interactions, I-DIDs introduce a new type of node called the model node (hexagonal node,
Mj,l−1, in Fig. 1(a)) that represents how another agent j acts as the subject agent i reasons
about its own decisions at level l. The model node contains as values the alternative com-
putational models ascribed by i to the other agent j from the set of computable intentional
models (and possibly subintentional models) of agent j at level l−1. A link from the chance
node, S, to the model node, Mj,l−1, represents agent i’s beliefs over j’s models. Specifi-
cally, it is a probability distribution in the conditional probability table (CPT) of the chance
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node,Mod[Mj ] (in Fig. 1(b)). An individual intentional model of j,mj,l−1 = 〈bj,l−1, θ̂j〉,
where bj,l−1 is the level l − 1 belief, and θ̂j is the agent’s frame encompassing the deci-
sion (rectangle), observation (oval) and utility (diamond) nodes. Each model, mj,l−1, could
be either a level l − 1 I-DID or a DID at level 0. Solutions to the model are the predicted
behavior of j and are encoded into the chance node, Aj , through a dashed link, called a pol-
icy link. Specifically, the dashed policy link which connects Aj to the model node Mj,l−1

represents the distribution over the other agent’s actions given its model. In the absence of
other agents, the model node and the chance node Aj vanish and I-DIDs collapse into tradi-
tional DIDs. Connecting Aj with other nodes in the I-DID structures how agent j’s actions
influence i’s decision-making process. The CPD of the chance node, Aj , is a multiplexer
that assumes the distribution of each of the action nodes (A1

j , A
2
j ) depending on the value of

Mod[Mj ] (shown in Fig. 1(b)). In other words, whenMod[Mj ] takes the valuem1
j,l−1,Aj

assumes the distributionA1
j . Similarly, whenMod[Mj ] takes the valuem2

j,l−1,Aj assumes
the distribution A2

j so on.
Expansion of an I-DID involves the update of the model node over time as indicated by

the model update link - a dotted link from M t
j,l−1 to M t+1

j,l−1 in Fig. 1(a). As agent j acts
and receives observations over time, its models should be updated. For each model mt

j,l−1

at time t, its optimal solutions may include all actions and agent j may receive any of the
possible observations. Consequently, the set of the updated models at t + 1 contains up to
|Mt

j,l−1||Aj ||Ωj | models. Here, |Mt
j,l−1| is the number of models at time t, and |Aj | and

|Ωj | the largest spaces of actions and observations respectively among all the models. The
models differ in their initial beliefs updated using a configuration of action and observation.
The CPT of Mod[M t+1

j,l−1] specifies the function, τ(btj,l−1, a
t
j , o

t+1
j , bt+1

j,l−1) which is 1 if
the belief btj,l−1 in the model mt

j,l−1 using the action atj and observation ot+1
j updates

to bt+1
j,l−1 in a model mt+1

j,l−1; otherwise, it is 0. Note that the probability of j’s possible
observation, ot+1

j , at time t+ 1, is obtained from the chance node Ot+1
j , which depending

on the value of Mod[Mj ] assumes the distribution of the observation node in the lower
level model. Similar to Aj , the CPD of Ot+1

j is also a multiplexer modulated by Mod[Mj ].
Fig. 1(b) also clarifies the semantics of the policy link and the model update link, and shows
how it can be represented using the traditional dependency links and chance nodes, and
transform an I-DID into a traditional DID. For clarity, we elaborate an example I-DID for
the well-studied multiagent grid meeting problem.

Example 1 (Level 1 I-DID) Figure 2 shows the I-DID for a level-1 agent i which considers
two models of j at level-0 in the two-agent grid meeting problem. The two models, mt,1

j,0

and mt,2
j,0, differ in j’s belief about the agents’ location in the grid and are included in the

model node M t
j,0.

We show the update of mt,1
j,0 and mt,2

j,0 in Fig. 3. As agent j may receive one of four
observations, eight updated models (mt+1,1

j,0 ,mt+1,1
j,0 ,mt+1,2

j,0 . . .mt+1,8
j,0 ) are generated in

the model node M t+1
j,0 . The probability that j’s updated model is, say mt+1,1

j,0 , depends on
the probability of the j performing the action and receiving the observation that led to this
model, and the prior distribution over j’s model at time step t. Expansion of the I-DID over
more time steps translates into repeating the steps of updating the set of models that form the
values of the model node and adding the relationships between the chance nodes, as many
times as there are model update links. Details of the model update link in the grid domain is
shown in Fig. 3.
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4mj,l-1

t+1,4

mj,l-1
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(b)

Fig. 1: (a) A generic two time-slice level l I-DID for agent i. The hexagons are the model
nodes that contain the ascribed models of agent j. Each model includes j’s belief – a proba-
bility distribution over chance node St in j’s DID or I-DID – and a frame consisting of the
rectangular action nodes, successive chance nodes and their CPTs, and the utility nodes, in
j’s two-time slice DID or I-DID. Policy links are marked as dash lines, while the model up-
date link is marked as a dotted lines. The dotted model update link represents the update of
j’s models and the distribution over the models over time; (b) Implementation of the model
update link using standard dependency links and chance nodes; e.g., two models, mt,1

j,l−1

and mt,2
j,l−1, are updated into four models (shown in bold) at time t+ 1.

3.2 Solution

A level l I-DID of agent i expanded over T time steps is solved in a bottom-up manner.
To solve agent i’s level l I-DID, all lower level l − 1 models of agent j must be solved.
Solution to a level l−1 model,mj,l−1, is j’s policy that is a mapping from j’s observations
in Oj to the optimal decision in Aj given its belief, bj,l−1. Subsequently, we may enter
j’s optimal decisions into the chance node, Aj , at each time step and expand j’s models in
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Fig. 2: A two time-slice level 1 I-DID for agent i in the grid problem. The model update link
has been replaced by regular arcs in DIDs. The lower level models are solved to obtain the
distributions for the chance action nodes.

Mj,0
t Mj,0

t+1
Aj

t Aj
t+1

Mod[Mj,0
t]

Aj
2

Aj
1 Sense

Wallj1

Sense
Wallj2

Mod[Mj,0
t+1]

Sense
Walljt+1

Aj
2

Aj
1

Aj
3

Aj
8

mj,0
t,1

Aj
t

GridLocationt
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t,2
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t+1,1

mj,0
t+1,2

mj,0
t+1,3

mj,0
t+1,8

GridLocationt+1

Fig. 3: Details of the model update link where two models are expanded into eight models
in the new time step.

Mod[Mj,l−1] corresponding to each pair of j’s optimal action and observation. We perform
this process for each of level l−1 models of j at each time step, and obtain the fully expanded
level l model. We outline the algorithm for exactly solving I-DIDs in Fig. 4 [35].

The computational complexity of solving I-DIDs is mainly due to the exponential growth
of lower l−1 j’s models over time. Although the space of possible models is very large, not
all models need to be considered in the model node. Models that are behaviorally equivalent
(BE) [61] – whose behavioral predictions for the other agent are identical – could be pruned
and a single representative model can be considered. This is because the solution of the



10 Chandrasekaran, M. et al.

subject agent’s I-DID is affected by the behavior of the other agent only; thus we need not
distinguish between BE models. Let PruneBehavioralEq (Mj,l−1) be the procedure that
prunes BE models fromMj,l−1 returning the representative models (line 6).

Note that lines 4-5 (in Fig. 4) solve level l-1 I-DIDs or DIDs and then supply the policies
to level l I-DID. Due to the bounded rationality of level l-1 agents, the solutions lead to a
suboptimal policy of agent j, which certainly compromises agent i’s performance in the
interactions particularly in a team setting. Also, note that the level 0 models are DIDs that
do not involve learning. We will show in the coming sections that solving I-DIDs integrated
with RL may generate the expected team behavior among agents i and j.

I-DID EXACT(level l ≥ 1 I-DID or level 0 DID, horizon T )
Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Populate Mt+1
j,l−1

3. For each mtj inMt
j,l−1 do

4. Recursively call algorithm with the l − 1 I-DID
(or DID) that represents mtj and horizon, T − t

5. Map the decision node of the solved I-DID (or DID),
OPT (mtj), to the corresponding chance node Aj

6. Mt
j,l−1← PruneBehavioralEq(Mt

j,l−1)
7. For each mtj inMt

j,l−1 do
8. For each aj in OPT (mtj) do
9. For each oj in Oj (part of mtj ) do
10. Update j’s belief, bt+1

j ← SE(btj , aj , oj)

11. mt+1
j ← New I-DID (or DID) with bt+1

j

12. Mt+1
j,l−1

∪← {mt+1
j }

13. Add the model node, Mt+1
j,l−1, and the model update link

14. Add the chance, decision, and utility nodes for
t+ 1 time slice and the dependency links between them

15. Establish the CPTs for each chance node and utility node
Solution Phase
16. If l ≥ 1 then
17. Represent the model nodes, policy links and the model

update links as in Fig. 1 to obtain the DID
18. Apply the standard look-ahead and backup method

to solve the expanded DID

Fig. 4: Algorithm (originally introduced by Doshi et al. [34]) for exactly solving a traditional
level l ≥ 1 I-DID or level 0 DID expanded over T time steps.

4 Teamwork in Interactive DIDs

Ad hoc teamwork involves multiple agents working collaboratively in order to optimize the
team reward. Each ad hoc agent in the team behaves according to a policy, which maps
the agent’s observation history or beliefs to the action(s) it should perform. We begin by
showing that the finitely-nested hierarchy in I-DID does not facilitate ad hoc teamwork.
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However, augmenting the traditional model space with models whose solution is obtained

via reinforcement learning provides a way for team behavior to emerge.

4.1 Implausibility of Teamwork

As mentioned earlier, in this article, we seek to shape the answer to the general question:

Could intentional agents planning and acting individually in a multiagent setting each using,
say the finitely-nested I-DID, engage in team behavior? To the best of our knowledge, this

specific question remains open.

We illustrate the challenge in observing team behavior when agents plan and act in-

dividually in a mutiagent setting using bounded optimalilty such as finitely-nested I-DIDs

next. Figure 5 shows a team setting of a two-agent grid meeting problem [17]. An agent can

detect the presence of a wall on its right (RW ), left (LW ) or the absence of it on both sides

(NW ). Given a specific observation, the agent may choose to either move in one of four

cardinal directions – south (MS), north (MN ), east (ME), or west (MW ) – or stay in the

same cell (ST ). Each agent i or j moves in the grid and collects rewards as determined by

the number indicated in the occupied cell. If they move to different cells, the agents get their

own individual reward. However, if they move to the same cell allowing them to hold an ad

hoc meeting, they will be rewarded with twice the sum of their individual rewards. Initial

positions of the two agents are shown in color and we focus on their immediate actions.

Fig. 5: Agents i and j in the grid meeting problem with the numbers corresponding to

rewards. Each agent receives the sum of the rewards in the cells occupied by the agents.

Each agent, i or j, in a team receives the joint reward that is the sum of the individual

reward proportional to the numbers in each cell occupied by the agents. The team’s objective

is to move to the same cell allowing them to hold a meeting and getting twice the sum of

their individual rewards. Initial positions of the two agents are shown colored and we focus

on their immediate actions.

If each agent is self interested and deliberates at its own level, agent i modeled at level

0 will choose to move left while a level-0 agent j chooses to move down. Each agent will

occupy a cell with a reward of 15 and the whole team gets 30. Agent i modeled at level 1 and

modeling j at level 0 thinks that j will move down, and its own best response to predicted

j’s behavior is to move left. Analogously, a level-1 agent j would choose to move down.

A level 2 agent i will predict that a level-1 j moves down as mentioned previously, due to

which it decides to move left. Analogously, a level-2 agent j continues to decide to move

down. We may apply this reasoning inductively to conclude that level l ≥ 0 agents i and

j would move left and down, respectively, thereby earning a joint reward of 30. However,
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the optimal team behavior in this setting is for i to move right and j to move up thereby
obtaining a team reward of 40.

Established hierarchical classifications in game theory [1,13,52] and in multiagent sys-
tems [39] assert that at the lowest level (level 0), an intentional agent acts only on its own
desires and the state of the world, with no understanding of the other agent’s beliefs, pref-
erences or capabilities. We formally define a level-0 model as: mj,0 = 〈bj,0, θ̂j〉, where
bj,0 ∈ ∆(S) is the level-0 belief and θ̂j is agent j’s frame encompassing the decision, ob-
servation and utility nodes in the DID. The level-0 belief is a probability distribution over
the physical states only. In particular, agent j at level 0 does not explicitly model agent i; it
acts without awareness of i in the common environment. Agents that are strategic model the
other agents at levels up to one less than their own.

Clearly, this construction approximates the infinitely-nested belief system. One conse-
quence of this bounded modeling is that decision making based on these finite hierarchical
systems may not prescribe the optimal team behavior in cooperative settings. Observation 1
states this more formally:

Observation 1 There exist cooperative multiagent settings in which boundedly-rational in-
tentional agents each modeled using the finitely-nested I-DID (or I-POMDP) may not choose
the jointly optimal behavior of working together as a team.

Notice that an offline specification of level-0 models in cooperative settings is neces-
sarily incomplete because level-0 semantics do not allow modeling others. This inhibits
teamwork because level-0 models are not team aware and may not know the team task,
as demonstrated in the grid meeting problem. However, the true benefit of cooperative ac-
tions often hinges on others performing supporting actions, which by themselves may not
be highly rewarding to the agent. Thus, despite having an identical frame and solving the
level 0 models optimally, the agent may not engage in optimal team behavior.

In general, this observation holds for cooperative settings where the self-maximizing
level 0 models result in predictions that are not consistent with team behavior. Of course,
settings may exist where the level-0 model’s solution coincides with the policy of a team-
mate thereby leading to joint teamwork. Nevertheless, the significance of this observation is
that we cannot rely on finitely-nested I-DIDs to generate optimal teammate policies.

We observe that team behavior is challenging in the context we study above because of
the bounded rationality imposed by assuming the existence of a level 0. The boundedness
precludes modeling others at the same level as one’s own – as an equal teammate. However,
at the same time, this imposition is, (a) motivated by reasons of computability, which allow
us to operationalize such a paradigm; and (b) allows us to avoid some self-contradicting, and
therefore impossible beliefs, which exist when infinite belief hierarchies are considered [18].
Consequently, this work is of significance because it may provide us a way of generating
optimal team behavior in finitely-nested frameworks, which so far have been utilized for
noncooperative settings; this provides a principled way to plan ad hoc teamwork.

4.2 Augmented Level 0 Models that Learn

We present a principled way to induce team behavior by enhancing the reasoning ability
of lower-level models. While it is difficult to a priori discern the benefit of moving up for
agent j in Fig. 5, it could be experienced by the agent. Specifically, it may explore moving
in different directions including moving up and learn about its benefit from the ensuing,
possibly indirect, team reward.
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If we place agents in the cooperative problem domain or the simulated environment,
an agent may come to experience the benefit of performing team actions. Subsequently, we
may expect an agent to learn policies that are consistent with optimal teammate behavior
because the corresponding actions provide large reinforcements. For example, given that
agent i moves right in Fig. 5, j may choose to move up in its exploration, and thereby
receive a large reinforcing reward. This insight motivates formulating level-0 models that
utilize RL to generate the predicted policy for the modeled agent. Essentially, we expect
that RL with its explorations could compensate for the lack of teamwork due to bounded
reasoning in finitely-nested I-DIDs.

Because solutions of level-0 models are single-agent policies for the modeled agent
only, we focus on the modeled agent’s learning problem. However, rewards in the multia-
gent setting usually depend on actions of all agents due to which the other agent must be
considered as well. The other agent’s actions are a part of the environment and its presence
hidden at level 0, thereby making the problem one of single-agent learning as opposed to
one of multi-agent learning.

We augment the level-0 model space, with the augmented space denoted asM′j,0, by
additionally attributing a new type of level 0 model to the other agent j: m′j,0 = 〈bj,0, θ̂′j〉,
where bj,0 is j’s belief and θ̂′j,0 is the frame of the learning model. The frame θ̂′j,0 consists of
the learning rate, α; a seed policy, π(0)

j , of planning horizon T , which includes a fair amount
of exploration; and the chance and utility nodes of the DID along with a candidate policy
of agent i, which could be an arbitrary policy from i’s policy space, Πi, as agent i’s actual
behavior is not known. This permits a proper simulation of the multiagent environment.

This type of modelm′j,0 differs from a traditional DID based level-0 model in the aspect
that m′j,0 does not pre-specify the planning process of how agent j optimizes its decisions,
but allows j to learn an optimal policy with the learning rate either online or in a simu-
lated setting. Different models of agent j differ not only in their learning rates and seed
policies, but also in i’s candidate policy that is used. In principle, while the learning rate
and seed policies may be held fixed, j’s model space could be as large as i’s policy space.
Consequently, our augmented model space becomes extremely large.

4.3 Model-Free Learning: Generalized MCESP

Learning has been used toward decision making in both single- and multi-agent settings.
Both model-based [30] and model-free [51,53,59] learning approaches exist for solving
POMDPs. Banerjee et al. [14] utilized a distributed RL approach solving finite horizon
DEC-POMDPs. Recently, Ng et al. [56] incorporated Bayesian model learning in the context
of I-POMDPs where adversarial agents learn the transition and observation probabilities
by utilizing parametric forms of transition and observation functions, and augmenting the
interactive states with possible parameters of these functions.

A survey [58] classifies methods for multiagent learning into two broad categories: team
learning where a single learner discovers joint policies and concurrent learning where mul-
tiple simultaneous learners are used. These approaches assume prior knowledge about the
existence of other agents in the environment. In stark contrast to both forms of multiagent
learning, our requirement is individual learning by an agent in a multiagent setting. This is
a perspectivistic approach of multiagent learning that is understudied. Other than Ng et al.’s
Bayes-adaptive I-POMDPs mentioned in the previous paragraph [56], we are unaware of
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other methods for such learning in a partially-observable environment; however, this method
is not model free.

Because the setting in which the learning takes place is partially observable, RL ap-
proaches that compute a table of values for state-action pairs such as traditional Q-learning
do not apply. We adapt Perkin’s Monte Carlo Exploring Starts for POMDPs (MCESP) [59],
which has been shown to learn good policies in fewer iterations while making no prior as-
sumptions about the agent’s models in order to achieve convergence. MCESP maintains a
Q table indexed by observation oj and action aj that gives the value of following a policy
πj except when observation oj is obtained at which point action aj that is different from
the action prescribed by the policy πj is performed. An agent’s policy in MCESP maps the
most recent observation to actions over the T time horizon, which is an approximation.

We generalize MCESP so that observation histories of length up to T , denoted as o, are
mapped to actions. A table entry, Qπj

o,a, is updated over every simulated trajectory of agent
j, τ = { φ, a0j , r0j , o1j , a1j , r1j , · · · , oT−1

j , aT−1
j , rT−1

j , oTj }, where rj is the team reward
received and φ denotes no observation. Specifically, the Qπj

o,a value is updated as:

Q
πj
o,a ← (1− α)Qπj

o,a + αRpost−o(τ) (1)

where α is the learning rate and Rpost−o(τ) is the sum of rewards of a portion of the
observation-action sequence, τ , following the first occurrence of o in τ say at t′:

Rpost−o(τ) =

T−1∑
t=t′

γtrtj

where γ ∈ [0, 1) is the discount factor. Alternate policies are considered by perturbing the
action for randomly selected observation histories. As such, MCESP is analogous to policy
iteration cf. the value iteration analogy of methods such as Q-learning.

Level-0 agent j learns its policy where the ad hoc agent i’s actions are implicit in the
environment. In other words, agent j needs to reason about the unknown behavior of i as
it learns a level-0 policy using the generalized MCESP. Agent j considers the entire policy
space of the ad hoc agent i Πi and a fixed policy of i, πi(∈ Πi), results in one learned j’s
policy, πj .

We show the algorithm for solving the ad hoc agent’s teammate’s level-0 models using
the generalized MCESP in Fig. 6. The algorithm takes as input teammate j’s model (with
seed policy π(0)

j ) whose solution is needed and the fixed policy of the ad hoc agent i, which
becomes a part of the environment. We note that by assuming a randomly initialized seed
policy, we are able to achieve a fair amount of exploration because we now allow the agent
j to learn a sub-optimal teammate policy π̇j and consequently take sub-optimal teammate
actions with a non-zero probability in response to the fixed policy πi. We repeatedly obtain a
trajectory τ of length T either by running the agent online or simulating the environment by
sampling the states, actions and observations from the appropriate CPTs (lines 5-10). The
trajectory is used in evaluating the value of the current transformed policy under considera-
tion πj of agent j (line 11). Initially, we utilize the seed policy contained in agent j’s model.
If another action a′ for the observation sequence o is optimal after evaluating both the origi-
nal and the transformed policy for the same number of k > 0 sample trajectories, we update
πj to conditionally use this action otherwise the policy remains unchanged (lines 12-13).
This is followed by generating a perturbed policy in the neighborhood of the previous one
(line 14), and the evaluation cycle is repeated. If the perturbation for every (o, a) pair is
discarded, we may terminate the iterations returning the current policy and its action-value.
For convenience, we denote the action-value Qπj

o,πj(o)
more simply as Qπj .
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RL FOR LEVEL 0 MODEL (j’s model m′j,0, i’s policy πi, T )

1. Sample the initial state s from bj,0 in j’s model
2. Set current policy of j denoted as πj using the seed

policy in j’s model
3. Set τ ← {φ} (empty observation)
4. Repeat
5. For t = 0 to T − 1 do
6. Obtain i’s action from πi and j’s action, atj ,

from current policy of j using observation history
7. Obtain the next state, s′, either by performing

the actions or sampling
8. Obtain team reward, rtj , using state and joint actions
9. Obtain j’s observation, ot+1

j , using next
state and joint actions

10. Generate trajectory, τ ← τ ∪ {atj , rtj , o
t+1
j }

11. Update Q
πj
o,a according to Eq. 1

12. If max
a′

Q
πj

o,a′ > Q
πj

o,πj(o)
and Q

πj

o,a′ , Q
πj

o,πj(o)
were

both updated using k trajectories
13. πj(o)← a′

14. Perturb an action a in πj for some o
15. Until termination condition is met
16. Return πj and Q

πj

o,πj(o)

Fig. 6: Algorithm for learning agent j’s policies when modeled at level 0.

Let Tj = {trj} be a collection of perturbations each of which maps a policy to another
policy such that for some observation sequence another action will be performed. The fol-
lowing lemma shows that the generalized MCESP should yield a policy for agent j that is
locally optimal in the limit. The lemma formalizes an observation made in Perkins [59].

Lemma 1 (Local optimality) Let π(1)
j , π(2)

j , π(3)
j , . . . , π̇(n)

j be the sequence of j’s policies

incrementally produced in RL FOR LEVEL 0 MODEL (m0
j ,πi, T ) where π(c+1)

j = Tj(π(c)
j ),

0 ≤ c ≤ n− 1. Then, in the limit of k →∞ we have,

1. The expected utility of each policy in the sequence is strictly greater than its predecessor,
i.e.,

Qπ
(c+1)
j > Qπ

(c)
j for 0 ≤ c ≤ n− 1

2. The final policy π̇(n)
j returned by the algorithm is locally optimal, i.e.,

¬∃trj ∈ Tj Qtrj(π̇
(n)
j ) > Qπ̇

(n)
j

Proof As k approaches∞, the estimated action valuesQπj
o,a for all (o, a) pairs as computed

by Eq. 1 almost surely approaches the theoretical expected action-value by the strong law of
large numbers – empirical distribution of post-o rewards obtained from the collection of k
trajectories is identical to the exact distribution in the limit of k →∞ because observations
and actions of j in the trajectories are i.i.d. given a fixed πi.

Assertion (1) then follows from line 12 of Fig. 6 because updated policy in line 13 will
always have an expected action-value that is greater than the action-value of the previous
policy.
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Let π̇(n)
j be j’s policy returned by the algorithm. According to the condition for termi-

nation, no other policy obtained by applying any perturbation in Tj that explores a different
action for any single observation sequence yields a higher action-value. Therefore, π̇(n)

j has
the highest value in the space of neighboring policies as obtained by applying each pertur-
bation in Tj to π̇(n)

j . Assertion (2) now follows. ut

Proposition 1 below is derived easily given the lemma above. It states that the policy output
from RL is of value that is at least as good as the seed policy that is input to the algorithm
in the limit of k →∞.

Proposition 1 Let π̇(n)
j be agent j’s policy returned by RL FOR LEVEL 0 MODEL (m0

j ,πi,

T ) and π(0)
j be the seed policy in m0

j . Then, as k→∞ the following holds in the limit:

Qπ̇
(n)
j ≥ Qπ

(0)
j (2)

Proof Consider the case where π(0)
j is locally optimal. In other words, no perturbation in

Tj results in a policy whose action-value is greater than that of π(0)
j . It follows that in the

limit of k →∞, RL for Level 0 Model will return π(0)
j . Therefore, Eq. 2 holds trivially.

Otherwise, if π(0)
j is not locally optimal then Lemma 1 establishes that the algorithm

will incrementally produce a sequence of policies each of which improves in value over the
previous one with the sequence culminating in π̇(n)

j that is locally optimal. As the ‘greater
than in value’ relation is obviously transitive, Eq. 2 holds in this case. ut

Though the above mentioned theoretical results are established at the limit, these should
begin to obtain in practice as the number of trajectories becomes sufficiently large.

As we mentioned previously, agent j’s level 0 model space is inclusive of i’s policies
space Πi. As the space of i’s policy becomes large particularly for a large planning horizon,
it is intractable for j to learn a policy for all i’s candidate policies. In addition, considering
that few of i’s policies are actually collaborative we formulate a principled way to reduce
the full space to those policies of i, denoted as Π̂i, that could be collaborative.

Our approach is as follows. We begin by picking a random initial policy of i, π(0)
i ,

and using it in the frame of a new model of j. We apply generalized MCESP to this frame
to obtain agent j’s locally-optimal policy π̇(n)

j where the seed π(0)
j was identical to π(0)

i .

Next, both the initial policy of j used by MCESP and i’s policy is set to π̇(n)
j . MCESP then

checks for the neighbors of π̇(n)
j , which improve on the joint utility of (π̇(n)

j ,πi (= π̇
(n)
j )).

If successful, an improved neighboring policy, say π̇(m)
j , is returned. Proposition 1 ensures

that the utility of π̇(m)
j is greater than or equal to π̇(n)

j (used as the seed) for the same πi (=

π̇
(n)
j ).

We continue these iterations setting πi as π̇(m)
j and using π̇(m)

j as the seed policy for j.

MCESP cannot improve on π̇(m)
j if π̇(m)

j is also the local best response to πi = π̇
(m)
j . If this

condition is satisfied, the procedure terminates. Otherwise, both π̇(n)
j and π̇(m)

j are added to
the set of candidate predictions of level 0 behavior of j. The process may be restarted with a
different random policy of the ad hoc agent i. We demonstrate this method on the 3×3 Grid
domain in Fig. 7.
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Fig. 7: We illustrate the iterative procedure to generate collaborative policies for lower-
level teammate j in the 3x3 Grid. Hexagonal model node contains the set of candidate
predictions of level-0 behavior of j. We start with (a) a random initial policy of ad hoc
agent i π(0)

i in the frame of teammate j’s model that is intrinsic in the environment; (b)
execute generalized MCESP to generate a policy for agent j π̇(n)

j obtained by invoking RL
FOR LEVEL 0 MODEL on (mj,0, πi) and we repeat this procedure until termination; (c)
The learning converges to a fixed point π̇(m)

j after which procedure may be restarted with
another random initial policy for i.



18 Chandrasekaran, M. et al.

We establish that the above iterative procedure represents a principled hill climb through
the space of j’s level-0 models for the team setting where the ad hoc agent i and its teammate
j share a common reward function and initial belief over the state space. The team reward
is equal to the sum of the individual agent rewards or its affine transformation, as is the
case for the Grid domain of Fig. 5. Note that agents receive the team reward only. This is a
transparent and typical way of deriving team rewards utilized by many cooperative problem
domains. Proposition 2 also asserts that this procedure is devoid of oscillations and always
terminates.

Proposition 2 (Hill Climb) Let π̇(n)
j , π̇(m)

j , . . . , π̇(q)
j be j’s policies produced by the above

mentioned iterative procedure. Agent i’s policies implicit in the frame begin with a random
policy and are assigned the previously-obtained j’s policy as described. Then, the following
holds in the limit of k →∞:

1. Action-values reflecting the team utility always improve until the procedure terminates.
Formally,

Qπ̇
(n)
j < Qπ̇

(m)
j < . . . < Qπ̇

(q)
j

2. The procedure will always terminate and the termination occurs at a fixed point obtained
when RL FOR LEVEL 0 MODEL is invoked on (π̇

(q)
j , πi(= π̇

(q)
j ), T ) and it returns π̇(q)

j .

Proof Run the iterative procedure on seed policies (π(0)
j (= π

(0)
i ), π

(0)
i ). This involves in-

voking RL FOR LEVEL 0 MODEL with these seed policies, and let it return π̇(n)
j . Proposi-

tion 1 entails that the action-value reflecting the team utility Qπ̇
(n)
j > Qπ

(0)
j . This implies

a key observation that the contribution of π̇(n)
j to the team reward is greater than the con-

tribution of π(0)
j – former is a better plan for the team. Therefore, setting πi = π̇

(n)
j in the

next iteration will result in team utility of (π̇(n)
j , πi(= π̇

(n)
j )) that is strictly greater than

that of (π̇(n)
j , π

(0)
i ) because team utility is the sum of individual agent rewards (or its affine

transformation). Furthermore, let π̇(m)
j be returned from RL using the former as the seed.

Again, Prop. 1 establishes that Qπ̇
(m)
j > Qπ̇

(n)
j for the fixed πi = π

(n)
i . Consequently, we

assert that the action-valueQπ̇
(m)
j obtained from this iteration>Qπ̇

(n)
j as obtained from the

previous iteration in which πi = π
(0)
j . Assertion 1 then follows using same arguments for

next iterations, until RL does not improve on the input.
Let RL FOR LEVEL 0 MODEL invoked on (π̇

(q)
j , πi(= π̇

(q)
j ), T ) as its input argument

return π̇(q)
j because no local pertubation results in a policy that improves on the seed. This is

a fixed point for the iterative procedure because setting πi = π̇
(q)
j in the next iteration results

in the same input argument to RL as in the previous iteration. The procedure terminates when
this fixed point is detected.

A potential oscillation may result if RL FOR LEVEL 0 MODEL invoked on (π̇
(q)
j , πi(=

π̇
(q)
j ), T ) results in π̇(q−1)

j – note that this formed the previous iteration’s πi. Consequently,

πi in the next iteration will also assume π̇(q−1)
j thereby yielding a repeat of these two iter-

ations that goes on infinitely. However, it is straightforward to show that such an oscillation
is impossible. Let the RL on using input (π̇(q)

j , πi(= π̇
(q)
j , T ) yield π̇(q−1)

j . It follows from

Prop. 1 that Qπ̇
(q−1)
j > Qπ̇

(q)
j for the same πi, which implies that π̇(q−1)

j adds a larger in-

dividual reward to the team utility compared to π̇(q)
j . But this is a contradiction because
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RL FOR LEVEL 0 MODEL invoked in the previous iteration on (π̇
(q−1)
j , πi(= π̇

(q−1)
j ), T )

yielded π̇(q)
j implying that π̇(q)

j contributes a larger reward than π̇(q−1)
j .

One or more optima that include Nash equilibria will always exist in team problems.
More specifically, the global optimum is also a Pareto-optimal Nash equilibrium. ut

Of course, as with any other local search procedure, our iterative hill climb may not yield
the global optimum. Nevertheless, random restarts as suggested previously should assist.

4.4 Augmented I-DID Solutions

Solving augmented I-DIDs is similar to solving the traditional I-DIDs except that the candi-
date models of an agent at level 0 may be learning models. We show the revised algorithm
in Fig. 8. When the level-0 model is a learning model, the algorithm invokes the method
LEVEL 0 RL shown in Fig. 6. Otherwise, it follows the same procedure as shown in Fig. 4
to recursively solve the lower-level models.

While we consider a reduced space of agent i’s policies in a principled way, and there-
fore agent j’s learning models, we may further reduce agent j’s policy space by heuristically
keeping top-K policies of j, K > 0, in terms of their expected utilities (line 11 in Fig. 6).
Observe that across models that differ in i’s policy and with the same initial belief, team
behavior(s) is guaranteed to generate the largest utility in a cooperative problem. This moti-
vates focusing on models with higher utilities. Hence, the filtering of j’s policy space may
not compromise the quality of I-DID solutions at level 1. However, because MCESP may
converge to a local optimum the resulting top-K policies are not guaranteed to include j’s
optimal collaborative policy in theory. Nonetheless, as our experiments demonstrate, we of-
ten obtain the optimal team behavior. As the number of optimal policies is unknown, we
normally use a sufficiently large value of K.

Agent j’s policy space may be additionally reduced because behaviorally equivalent
models – learning and other models with identical solutions – will be clustered [75]. In sum-
mary, we take several steps that include both principled and heuristic to limit the negative
impact of the increase in j’s model space. Using a subset of i’s policies preempts solving all
j’s models at level 0 while the top-K technique removes possibly non-collaborative policies.

5 Experiments

We conducted our experiments in two phases: First, we show that I-DIDs augmented with
level-0 models that learn facilitate team behavior, which was previously implausible in tra-
ditional I-DID formulations. To this end, we begin by validating the policies generated by
augmented I-DIDs by comparing with those obtained by a state-of-the-art DEC-POMDP
formulation of popular cooperative domains. Next, we compare the expected utility of the
subject agent’s policies obtained by augmented I-DIDs with the values of the optimal team
policies obtained using an exact DEC-POMDP approach. We establish the enhanced rea-
soning ability of level-0 models by demonstrating its benefit over traditional I-DIDs.

Second, we show the applicability of augmented I-DIDs to ad hoc teamwork in a setting
similar to the one used by Wu et al. [74]. We begin by showing that in most cases, Aug-
mented I-DIDs significantly outperform a known online ad hoc planner, OPAT, in terms of
the solution quality by allowing for better adaptability. Note that we had to generalize OPAT
to partially observable settings to facilitate a fair comparison. We analyze the significantly
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AUGMENTED I-DID (level l ≥ 1 I-DID or level 0 DID, T )

Expansion Phase
1. For t from 0 to T − 1 do
2. If l ≥ 1 then

Populate Mt+1
j,l−1

3. For each mtj inMt
j,l−1 do

4. If l > 1 then
5. Recursively call algorithm with the l − 1 I-DID

that represents mtj and the horizon, T − t
6. else
7. If the level 0 model is a learning model then
8. Solve using LEVEL 0 RL in Fig. 6

with horizon, T − t
9. else
10. Recursively call algorithm with level 0 DID

and the horizon, T − t
11. Select top-K j′s policies based on expected

utility values given the same belief
12. The remaining steps of the expansion phase are the same

as in Fig. 4.
Solution Phase
13. This is similar to the solution phase in Fig. 4.

Fig. 8: Algorithm for solving a level l ≥ 1 I-DID or level-0 DID expanded over T time steps
with M ′j,0 containing level 0 models that learn.

increased online run times for augmented I-DIDs over OPAT and identify its root cause – the
overhead due to the learning method of MCESP – as an avenue for immediate future work.

Finally, our experiments provide strong evidence toward drawing the important conclu-
sion that using RL to enhance the reasoning ability of level-0 models only is sufficient to
induce teamwork by bounded and self-interested agents.

5.1 Problem Domains

We empirically evaluate the performance of AUGMENTED I-DID in different configura-
tions of three well-known cooperative domains involving two agents, i and j: grid meeting
(Grid) [17], box-pushing (BP) [64], and multi-access broadcast channel (MABC) [42]. We
show I-DID formulations of each of these domains in the Appendix. First, we summarize
the domains below:
Grid meeting domain (Grid). A two-agent 3× 3 grid meeting (Grid) domain is illustrated
in Fig. 5. The problem has 9 physical states for a single agent where each state refers to
the agent’s position in the grid. Therefore, for the agent at level 1 and above , the problem
contains 81 states where each state refers to the joint position of both agents (i and j). The
agents can detect the presence of a wall on its right (RW ), left (LW ) or the absence of it on
both sides (NW ). Given a specific observation, the agent may choose to either move in one
of four cardinal directions – south (MS), north (MN ), east (ME), or west (MW ), or stay
in the same cell (ST ). Each agent’s actions are assumed to have the expected result only
60% of the time. The agent may transition to a cell in any other direction or stay in the same
cell each with a 10% probability. Movement into a wall returns the agent to its original state.
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As each ad hoc agent moves in the grid, they collect rewards indicated by the numbers in

the occupied cell. If they move to different cells, the agents get the sum of their individual

rewards. If they move to the same cell allowing them to hold an ad hoc meeting, they will

be rewarded with twice the sum of their individual rewards. A two-time slice I-DID for Grid
is shown in the Appendix.

Box-pushing domain (BP). Fig. 9 illustrates the two-agent box-pushing (BP) domain in

a 3 × 3 grid setting. In this domain, the two agents intend to push either a small or large

box into the goal region. The small box can be moved by a single agent whereas the large

one needs both agents to collaboratively push it. Each cell can host only one agent at any

point in time. The problem motivates teamwork and agents’ rewards are maximum when

both of them cooperate and push the large box into the goal. Physical states represent the

joint position and orientation of agents i and j. Additionally, there are two terminal states

indicating that either the small box or the large box is at the goal. Hence, there are 50 states

including the 2 terminal states in this domain. Each agent has 4 actions: turn left (TL), turn

right (TR), move forward (MF ) and stay (ST ). An agent can move a box into the goal only

when it is facing the box and performs the action MF . Each agent’s actions are assumed to

be successful 90% of the time and for the remaining 10%, it simply stays in place. To push

the large box into the goal, both agents need to face north and move forward and by doing

so, they achieve the largest reward of 100. The team is penalized 5 points if only one agent

attempts to push the large box. The reward for pushing the small box into the goal region

is 10 and the reward for being at any non-terminal state is -0.1 per agent to discourage ex-

cessive movement. Each agent is also equipped with sensors for observing its surroundings.

It may receive one of 5 possible observations: empty field (EF ), wall in front (WF ), other

agent (OA), small box in front (SF ), or large box in front (LF ). Appendix shows the IDID

for BP.

Fig. 9: An illustration of the box-pushing problem domain with two agents: i at position 1

facing east, and j at position 3 facing west in a 3 × 3 grid. We denote this state by 1E3W.

Multi-access broadcast channel domain (MABC). In the MABC problem, nodes need to

broadcast messages to each other over a channel. Only one node may broadcast at a time,

otherwise a collision occurs. The nodes share a common goal of maximizing the throughput

of the channel. At the start of each time step, each node can do one of 2 actions: send (S) a
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message, or wait (W ). We consider a setting where transmissions are assumed to be success-

ful only 90% of the time. The node receives a reward of 1 upon successful transmission of a

message and a reward of 0 otherwise. After performing an action, the node receives one of 2

noisy observations: collision (C), or no-collision (NC). The accuracy of these observations

is also 90%. The physical state represents the status of the message buffer (whose size = 1)

in each node. We illustrate the two-agent MABC problem in Fig. 10 and the I-DID in the

Appendix.

Multi-access Broadcast Channel

Fig. 10: An illustration of the MABC problem domain with two agents, i and j, each with a

buffer size of 1. The status of the buffer of each agent indicates whether a message is ready

to be sent or received. For example, a collision will occur if both agents’ buffer status is 1

and one of them tries to send a message over the multiacess channel to the other. We denote

the joint status as 11.

Domain T |M0
j | |Π̂i| Dimension

MABC

3 100 32

|Sj |=2, |Si|=4, |Ω|=2, |A|=24 100 64

5 200 64

BP
3 100 32

|S|=50, |Ω|=5, |A|=4
4 100 64

Grid
3 100 32

|Sj |=9, |Si|=81, |Ω|=3, |A|=5
4 200 100

4x4Grid
3 100 32

|Sj |=16, |Si|=256, |Ω|=3, |A|=5
4 200 100

6x6Grid
3 100 32

|Sj |=36, |Si|=1296, |Ω|=3, |A|=5
4 200 100

Table 1: Domain dimensions and experimental configuration.

We summarize the properties of the three domains and parameter settings of the Aug. I-
DID in Table 1. Note that |M0

j | is the number of initial models of agent j at level 0 inclusive

of both learning and non-learning models, and Π̂i is the subset of i’s policies generated

using the principled hill-climbing approach mentioned earlier, allowing us to reduce the

full space of j’s policies to those that are possibly collaborative. These were obtained from
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multiple restarts of the iterative hill climbing procedure. The median number of iterations
until termination were 3 with some taking as many as 6 iterations for the Grid domain.
Additional experimental settings for each phase are presented in corresponding subsections
that follow.

5.2 Teamwork in Finitely-Nested I-DIDs

We implemented the algorithm AUGMENTED I-DID as shown in Fig. 8 including an imple-
mentation of the generalized MCESP for performing level 0 RL.

5.2.1 Policy Illustrations

For establishing correctness, we first illustrate the policies obtained using Augmented I-
DIDs and compare them with those obtained from a DEC-POMDP formulation of the Grid
and BP problem domains.
Grid We begin our illustration with the 3×3 Grid and formulate a level 1 augmented I-DID
for agent i. Agent i believes with probability 1 that it is located in the middle cell (cell 4) in
the grid, and believes that j believes with probability 1 that it is also located in the middle
cell. Additionally, agent i assigns all its probability mass to a single learning model m′j,0 of
the other agent with α = 0.8 and whose seed policy permits moderate exploration. We may
formulate an analogous level-1 I-DID for agent j as well. Both agents face a T = 3 step
planning problem.

ME

MN

LW

*

ST

MS

*

ME

*

RW NW

(a)

MS

MN

LW

ST ME

RW NW

MS

LW

MN ST

RW NW

MW

LW

ST ST

RW NW

ME

LW

MS MN

RW NW

(b)

Fig. 11: Policy trees for agent j obtained from RL FOR LEVEL 0 MODEL method. Learning
predominantly results in policy tree (a) with the policy in (b) appearing as well. Paths
leading to team behavior are highlighted in red in each policy.

Solving the augmented I-DID recursively invokes RL FOR LEVEL 0 MODEL, which
requires the policy for agent i as input in order to correctly simulate the grid meeting en-
vironment and its team rewards for the learning to take place. In this demonstration of cor-
rectness and to speed up agent j’s learning process, we let agent i’s input policy be that of a
teammate.

We show the learned policy tree for agent j using the generalized MCESP in Fig. 11(a).
Generalized MCESP predominantly converges to this policy in about 10,000 iterations of
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LW
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Fig. 12: Solutions of the level 1 I-DID for agent i given the learned policies of j shown in
Fig. 11. Paths resulting in team behavior are highlighted in red.

the outer loop in Fig. 6. For those cases where this policy is not learned, the algorithm
converges to the policy shown in Fig. 11 (b). In response to the level-0 agent j learning each
of these policies, the corresponding level 1 I-DID’s solution is shown in Figs. 12(a) and (b),
respectively.

Policies for agents i and j as shown in Figs. 11(a) and 12(a) are identical and represent
the optimal team behavior for the grid meeting problem when both agents believe that they
are situated in the middle cell. 2 In particular, these joint policies have an expected value of
35.97 and are identical to the Pareto-optimal joint policies obtained by running GMAA*-
ICE – a recognized algorithm for solving DEC-POMDPs exactly – from the Multiagent
Decision Process toolbox [66]. As we highlight in the two policies, both agents first move
east and then move down on observing a wall on their right thereby reaching the goal in the
bottom-right corner. Both agents then choose to stay in the goal position in the final step
after they observe a wall on their right again.

Policies for agents i and j as shown in Figs. 11(b) and 12(b) involve the agents reaching
the goal through different routes. Here, agent i first moves east and then moves down on
observing a wall on its right. Meanwhile, agent j moves down instead, in the first step, and
then moves east when it observes no walls on either side. Both agents ultimately reach the
goal (the bottom-right cell). This policy does not involve traveling together and therefore is
of lesser value, 33.89, compared to the previous joint policy, but the difference is small.

BP To illustrate, we again formulate a level 1 augmented I-DID for agent i. Agent i believes
with probability 1 that the joint physical state of the problem is 1E3W, which denotes i at
position 1 and facing east, and j at position 3 facing west as shown in Fig. 9. Agent i
believes that j also assigns probability 1 to this physical state. Additionally, agent i assigns
all its probability mass to a single learning model, m′j,0, of the other agent with α = 0.8
and whose seed policy permits moderate exploration as in the previous domain. We may
formulate an analogous level-1 I-DID for agent j as well. We let both agents face T = 3
step and 4 step planning problems.

2 Policy shown in Fig. 11(a) is also obtained when agent j is modeled using a level 1 I-DID, and models
i at level 0.
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Fig. 13: One of the two learned policies for the level 0 agent j in the box pushing problem.

In this demonstration of correctness on BP and to speed up agent j’s learning process in
a domain that is large, we let agent i’s input policy to level 0 RL be that of a teammate. As
we mentioned previously, we plan to experiment with arbitrarily crafted policies that contain
exploration thereby allowing the teammate behavior to occur with a non-zero probability.
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Fig. 14: Solution of the level-1 I-DID of agent i given the learned policy of j in Fig. 13.
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We show one of the horizon-3 learned policy for the level 0 j in Fig. 13. These policies
were learned in approximately 10,000 iterations of the outer loop of the level 0 RL algo-
rithm. We expect j to behave according to the highlighted path in the tree. Consequently, j
begins by staying and on observing the other agent, it turns right thereby facing the large
box. This is followed by moving forward and pushing the box. The other learned policy
differs from this one in the order of the first two actions, which prescribe j moving right first
followed by staying.
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OA EF SF LF
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LF
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MF
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Fig. 15: (a) 4-step learned policy for j, and (b) solution of the level 1 I-DID for i for the
box pushing problem when i faces north and j remains unchanged in Fig. 9.

In response to either of these two learned policies of j, solution of the level 1 I-DID
generates the policy shown in Fig. 14. This prescribes that agent i move forward and on
observing another agent turn left followed by moving forward thereby pushing the large
box when it senses it. Notice that when we combine agent i’s policy with any of j’s two
learned policies, the two agents would likely behave according to the highlighted paths.
This behavior is the optimal team behavior in this problem domain with the given initial
beliefs, as verified by the Pareto-optimal output of the GMAA*-ICE algorithm from the
Multiagent Decision Process Toolbox.

We additionally experimented with an increased planning horizon of 4 time steps in
the box-pushing problem. Specifically, agent i believes that the physical state is 1N3E and
that j knows this as well. We show the policy learned after about 50,000 iterations for j in
Fig. 15(a). Because the entire policy tree is too large to show here, we focus on a key path
in the policy. Level 1 I-DID’s solution given this learned policy is shown in Fig. 15(b). Note
that the joint policies represent the optimal behavior for the particular start state, and the
highlighted paths in both policies is the optimal teamwork that will likely occur.

5.2.2 Expected Utility Comparisons

Next, we compare the expected utility of agent i’s policies with the values of the optimal
team policies obtained using an exact algorithm, GMAA*-ICE, for DEC-POMDP formula-
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tions of all three problem domains [66]. We also compare with the values obtained by tra-
ditional I-DIDs. All I-DIDs are solved using the exact discriminative model update (DMU)
method [75], which is the state of the art. For both traditional and augmented I-DIDs, we
utilized |M0

j |models at level 0 that differ in the initial beliefs or in the frame. We adopt two
model weighting schemes as the prior distribution over models: (a) Uniform: all policies are
uniformly weighted; (b) Proportional: let policies with larger expected utility be assigned
proportionally larger weights. Note that we maintain the top K by expected utility (out of
|M0

j |) learning and non-learning models only while solving Augmented I-DIDs. Though the
model space is significantly enlarged by the learning policies, the tractability of Augmented
I-DIDs improves significantly when both top-K and equivalence techniques are applied.

In Table 2, we observe that the Augmented I-DID significantly outperforms the tradi-
tional I-DID when level-0 agent j may learn, in all domains MABC, BP, and Grid; we
scaled the latter to larger 6 × 6 grid sizes. The traditional I-DID is solved using the I-DID
Exact algorithm of Fig. 4. Augmented I-DID’s solutions approach the globally optimal team
behavior as generated by GMAA*-ICE. We observe that the larger weights on the learned
policies lead to better quality i’s policies. This restates the importance of level-0 models that
perform RL. The small gap from the optimal DEC-POMDP value is due to the uncertainty
over different models of j. Note that DEC-POMDPs are informed about initial beliefs of all
agents (and do not face the issue of bounded rationality) whereas I-DIDs are not and they
consider the entire candidate model space of j. Furthermore, the augmented I-DID gener-
ates the optimal team behavior identical to that provided by GMAA*-ICE when i’s belief
places probability 1 on the true model of j, as is the setting for DEC-POMDPs. Increasing
K does not have a significant impact on the performance as K is large enough to cover a
large fraction of collaborative policies of agent j including that of the optimal teammate.

In Fig. 16, we illustrate the reduction of model space that occurs due to smaller val-
ues of K, which facilitates efficiency in the solution of the augmented I-DID. Though the
augmented level-0 model space is much larger than that of its traditional counterparts, the
growth in the number of models is limited due to the top-K heuristic.

5.3 Application to Ad Hoc Teams

Having established that augmented I-DIDs can yield teammate plans in a variety of domains,
we evaluate their applicability to ad hoc teams, which involve multiple agents interacting
without prior coordination. We describe the settings next followed by reporting on the per-
formance evaluation.

5.3.1 Experimental Settings

We test the performance of augmented I-DIDs in ad hoc teamwork applications involving
different teammate types and compare it with a known ad hoc planner, OPAT [74]. Team-
mate types are similar to those used in OPAT and include: (a) Random - when the teammate
plays according to a randomly generated action sequence for the entire length of the run. A
predefined set of random seeds are used to guarantee that each test has the same action se-
quences. (b) Predefined - when the teammate plays according to some predefined patterns;
these are sequences of random actions each repeated some number of times that is randomly
chosen at the beginning of each run. For example, if the action pattern is“1324” and the rep-
etition value is 2, the resulting action sequence will be “11332244”. (c) Optimal - when the
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Augmented I-DID Traditional I-DID
Domain K Uniform Proportional Uniform

MABC
32 2.12 2.30

(T=3) 16 2.12 2.30 1.79
8 2.12 2.30

DEC-POMDP (GMAA*-ICE): 2.99

MABC
64 3.13 3.17

(T=4) 32 3.13 3.17 2.80
16 3.13 3.17

DEC-POMDP (GMAA*-ICE): 3.89

MABC
64 4.08 4.16

(T=5) 32 3.99 4.16 3.29
16 3.99 4.16

DEC-POMDP (GMAA*-ICE): 4.79

BP
32 73.45 76.51

(T=3) 16 73.45 76.51 4.75
8 71.36 76.51

DEC-POMDP (GMAA*-ICE): 85.18

Grid
32 41.875 41.93

(T=3) 16 40.95 41.93 25.70
8 40.95 41.93

DEC-POMDP (GMAA*-ICE): 43.86

Grid
100 37.15 53.26

(T=4) 64 35.33 53.26 21.55
32 35.33 53.26

DEC-POMDP (GMAA*-ICE): 58.75

4x4Grid
32 29.25 29.60

(T=3) 16 29.25 29.60 19.82
8 27.33 29.60

DEC-POMDP (GMAA*-ICE): 31.37

4x4Grid
100 33.58 44.15

(T=4) 64 33.58 44.15 24.22
32 31.05 44.15

DEC-POMDP (GMAA*-ICE): 49.27

6x6Grid
32 46.27 48.35

(T=3) 16 46.27 48.35 31.50
8 46.27 48.35

DEC-POMDP (GMAA*-ICE): 55.16

6x6Grid
100 60.01 64.18

(T=4) 64 60.01 64.18 41.68
32 55.33 64.18

DEC-POMDP (GMAA*-ICE): 69.27

Table 2: Performance comparison between the traditional I-DID, Augmented I-DID, and
GMAA*-ICE in terms of the expected utility.

teammate plays rationally and adaptively. OPAT uses an optimal teammate policy for sim-
ulations, which is computed offline with the help of a generative model by value iteration.
Note that OPAT in its original form assumes perfect observability of the state and joint ac-
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Fig. 16: Top-K method reduces the added solution complexity of the augmented I-DID. The
complexity is dominated by the model space (number of models) in each time step.

tions. For comparison, we generalized OPAT to partially observable settings by considering
observation sequences.

Additionally, in order to speed up the generation of RL models at level 0, we imple-
mented an approximate version of our generalized MCESP called the Sample Average Ap-
proximation that estimates action values by taking a fixed number of sample trajectories
and then comparing the sample averages [59]. We used a sample size of n = 25 trajecto-
ries to compute the approximate value of the policy that generated them. We set α = 0.9,
and terminate the RL (line 15 in Fig. 6) if no policy changes are recommended after taking
n samples of the value of each observation sequence-action pair [59]. We also tested with
some domain-specific seed policies to investigate speedup in the convergence of MCESP.

Simulations were run for 20 steps and the average of the cumulative rewards over 10
trials are reported for similar teammate settings for the 3 problems. We show that the aug-
mented I-DID solution significantly outperforms OPAT solutions in all problem domains for
random and predefined teammates while performing comparably for optimal ones.

5.3.2 Performance Evaluation

Next, we compare with OPAT when the true model is included in the candidate model space,
and for evaluating robustness, the true model is not in the model space.

Table 3 shows that I-DIDs significantly outperform OPAT especially when the other
agents are random or predefined types in all three problem domains (Student’s t-test, p-
value≤ 0.001 for both) except when the teammate is of type predefined in MABC where the
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Ad Hoc
OPAT

Augmented I-DID

Teammate True model excluded True model included

Grid T=20, look-ahead=3

Random 12.25 ± 1.26 14.2 ± 0.84 –

Predefined 11.7 ± 1.63 16.85 ± 1.35 –

Optimal 28.35 ± 2.4 26.83 ± 3.45 27.96 ± 1.92

BP T=20, look-ahead=3

Random 29.26 ± 2.17 36.15 ± 1.95 –

Predefined 41.1 ± 1.55 54.43 ± 3.38 –

Optimal 52.11 ± 0.48 56.12 ± 3.13 59.2 ± 1.55

MABC T=20, look-ahead=3

Random 9.68 ± 1.37 12.13 ± 1.08 –

Predefined 12.8 ± 0.65 13.22 ± 0.21 –

Optimal 16.64 ± 0.28 14.23 ± 0.88 15.97 ± 1.31

Table 3: Baseline comparison with OPAT in the context of different types of teammates and
model spaces. For robustness, we experiment in settings where the true teammate model is
included in and excluded from the Augmented I-DID’s candidate model space3. Each data
point is the average of 10 runs and standard deviations are shown. ‘–’ denotes a setting that
is not applicable.

improvement over OPAT was not significant at the 0.05 level (p-value = 0.0676). Augmented
I-DID’s better performance is in part due to the sophisticated Bayesian belief update that
gradually increases the probability on the model that best explains the observations (true
model if it is present) in agent j’s model space as shown in Fig. 17 for MABC.

As expected, both OPAT and augmented I-DID based ad hoc agent perform better when
the other agent in the team is optimal in comparison to random or predefined type. Aug-
mented I-DIDs perform significantly better than OPAT when faced with optimal teammates
in BP, while the results for the other domains are similar. We also note that augmented I-
DIDs perform significantly (at the 0.05 level) better when the true model of the teammate
was included in the ad hoc agent’s candidate model space than when it was not except in the
Grid domain (p-value = 0.058) where the result was not significant at the 0.05 level.

In summary, the augmented I-DID maintains a probability distribution over different
types of teammates and updates both the distribution and types over time, which differs from
OPAT’s focus on a single optimal behavior of teammates during planning. Consequently,
augmented I-DIDs allow better adaptivity as examined above. Further experiments on the
robustness of augmented I-DIDs in dynamic ad hoc settings showed that agent i obtained
significantly better average rewards compared to OPAT (p-value = 0.042) for the setting
where the other agent is of type predefined and after 15 steps switches to an optimal type for
the remaining 15 steps in MABC.

In Fig. 18, we show the online run times for the augmented I-DID and generalized OPAT
approaches on the three problem domains. Expectedly, OPAT takes significantly less time

3 With random or predefined teammate types, due to the randomness involved in generating their behav-
iors, the true model of the teammate may not be present in the subject agent’s candidate model space.
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Fig. 17: Bayesian belief updates over 30 steps in MABC showing the beliefs converging to
fewer models (largest belief is that of agent j’s true model).
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Fig. 18: Timing results for augmented I-DID simulations and OPAT with an OPTIMAL team-
mate.

because it approximates the problem by solving a series of stage games modeling the other
agent using a single type. In the case of augmented I-DIDs, we observe that generating and
solving the added learning models consume the major portion of the total time. We show the
learning overhead for Grid, BP, and the MABC in red in the figure. To reduce this overhead
and speed up augmented I-DIDs, an avenue for future work is to relax the fully model free
RL of MCESP and find a middle ground in using some aspects of the model.

5.4 Scalability

Although we recognize that the learning component (MCESP) is the bottleneck to scaling
augmented I-DIDs for larger problems, we were successful in obtaining the optimal team-
mate policies using augmented I-DIDs (same as those computed by GMAA*-ICE) in the
4 × 4 Grid (256 physical states) and 6 × 6 Grid (1,296 physical states) for T = 3 and



32 Chandrasekaran, M. et al.

T = 4, BP for T = 4, and MABC for T = 5. For these larger problems, we also noticed
a significant improvement in the values obtained by augmented I-DIDs over their traditional
counterparts as shown in Table 2. Semi-model based learning in MCESP and other approx-
imation techniques, will allow us to further scale-up augmented I-DIDs. Furthermore, by
exploiting symmetry and other structural properties of applicable pragmatic domains, the
effective complexity of planning may be greatly reduced.

6 Concluding Remarks

Self-interested individual decision makers face hierarchical (or nested) belief systems in
their multiagent planning problems. In this article, we explicate one negative consequence
of bounded rationality: the agent may not behave as an optimal teammate. In the I-DID
framework that models individual decision makers who model other agents, possibly recur-
sively, we show that reinforcement learning integrated with the planning allows the models
to produce sophisticated policies. For the first time, we see the principled and comprehen-
sive emergence of team behavior in I-DID solutions facilitating I-DIDs’ application to ad
hoc teamwork. This is of significance because I-DIDs are naturally well-suited for sponta-
neous interactions with agents of unknown type. We show that integrating learning in the
context of I-DIDs helps us provide a solution to fundamental challenges in ad hoc teamwork
– building a single autonomous agent that can plan individually in partially observable envi-
ronments by adapting to different kinds of teammates while making no assumptions about
its teammates’ behavior or beliefs and seeking to converge to their true types. Augmented
I-DIDs compare well with a standard baseline algorithm, OPAT.

While individual decision-making frameworks such as I-POMDPs and I-DIDs are thought
to be well suited for non-cooperative domains, we show that they may be applied to coop-
erative domains as well. Integrating learning while planning provides a middle ground (or a
bridge) between multiagent planning frameworks such as DEC-POMDPs and joint learning
for cooperative domains [58]. Spaan et al. [67] demonstrate a similar use of learning to get
the communication started in each agent’s policy in a DEC-POMDP. This is needed because
agents will not choose to send messages as the other agent has not yet learned how to assim-
ilate messages in its planning. Agents are expected to learn when and how to communicate
as well as how to interpret the communication. Augmented I-DIDs differentiate themselves
from other centralized cooperative frameworks by focusing on the behavior of an individual
agent in a multiagent setting.

While we recognize that introducing learning-based models adds a significant challenge
to scaling I-DIDs for larger problems, we successfully obtained optimal teammate policies
using augmented I-DIDs in the 6 × 6 Grid and BP using a combination of intuitive prun-
ing techniques. By allowing models formalized as I-DIDs or DIDs to vary in the beliefs
and frames, we considered an exhaustive and general space of models during planning. The
convergence of RL is not predicated on any prior assumptions about other’s models. Addi-
tionally, problem-specific solutions that address the inadequacy of traditional I-DIDs cannot
be ruled out. However, this article contributes a general and principled way to address the
inadequacy that should benefit researchers working in various domains; this makes for a
stronger contribution.

Immediate lines of future work involve improving the scalability of the framework, par-
ticularly its learning component by exploring semi-model based approaches to learning, and
investigating much larger pragmatic domains which have structural properties (like symme-
try) that can be exploited for tractability [40,41,55].
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7 Appendix

We show I-DIDs for three problem domains – BP, Grid, and MABC. For the sake of clarity,
we limit the illustration to two-agent settings in which the level-1 agent i considers two
level-0 models for the other agent j. The two IDs differ in their beliefs over the physical
states. The conditional probability distributions (CPDs) of all the nodes in each I-DID are
specified according to the problem described earlier in Section 5.

7.1 Multiagent Box Pushing
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Fig. 19: (a) Level-1 I-ID of agent i in the multiagent BP domain, (b) two level-0 IDs of
agent j whose decision nodes are mapped to the chance nodes, A1

j , A2
j , in (a), indicated

by the dotted arrows. The two IDs differ in their distributions over the chance node, Posi-
tion&Orientation

First, an abstract representation of the level-1 I-ID for BP is shown in Fig. 19. The
physical state specifies the joint position and orientation of both the agents. We represent
this composite state space by a chance node labeled Position&Orientation. Each agent may
sense the presence of a wall, other agent, a box, or an empty field in the direction it is facing.
These observations are modeled by another chance node SenseFacing. We may unroll the
I-ID in Fig. 19 into an I-DID spanning two time slices as shown in Fig.20. The model node,
M t
j,0, contains the different DIDs that are expanded from the level-0 IDs in Fig. 19(b).

We may further exploit the structure of the problem by factoring the state space into
position and orientation indexed by each participating agent. We draw additional benefits
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Fig. 20: An abstract two time-slice level 1 I-DID for agent i in BP. The model node contains

level 0 DIDs of agent j that expand the IDs.

from also factoring the action space because some actions only impact certain factors of the

state. For example, each agent may choose to perform one of 4 possible actions – turn left

(TL), turn right (TR), move forward (MF ) and stay (ST ). The turn actions impact the

orientation of the agent only, while the move and stay actions impact the agent’s position in

the grid only. We illustrate this factorization of the chance nodes Position&Orientation and

Aj , and the decision node Ai, in Fig. 21.

Fig. 21: Position and Orientation: Per-agent factors of the composite state space in BP
abstractly represented by the node Position&Orientation; TurnActions and MoveActions:

Per-agent factors of the composite action space modeled by nodes Ai and Aj .
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Fig. 22: A factored representation of the two time-slice level 1 I-DID for agent i in BP.

Finally, in Fig. 22, we illustrate a fully factored representation of the level-1 I-DID
(shown in Fig. 20) for agent i in BP.

7.2 Multiagent Grid Domain

An abstract representation of the level-1 I-ID for Grid is shown in Fig. 23. The physical
states in this domain represent the joint location (x, y coordinates) of each agent in the grid.
This composite space is modeled by the chance node GridLocation. We may unroll the I-ID
in Fig. 23 into the corresponding I-DID spanning two time slices as shown in Fig. 24.

In agent i’s I-DID, we assign the marginal distribution over the agents’ joint location to
the conditional probability distribution (CPD) of the chance node GridLocationti. In the next
time step, the CPD of the chance node GridLocationt+1

i , conditioned on GridLocationti,
Ati, and Atj , is the transition function. The CPDs of the chance node GridLocationt+1

i ,
the observation node SenseWallt+1

i , and the utility node Ri are specified according to the
problem described in Section 5. Finally, the CPD of the chance node Mod[M t+1

j ] in the
model node, M t+1

j,l1 , reflects which prior model, action and observation of j results in a
model contained in the model node.

As in BP, we may factorize the physical state of Grid to specify the agents’ correspond-
ing locations in terms of their x and y coordinates, as modeled by the chance nodes GridX
and GridY shown in Fig. 25. On performing the action(s) at time step t, j may receive obser-
vations that detect the presence of a wall on its right, left, or the absence of it on both sides,
as modeled in the observation node SenseWall. This is reflected in new beliefs on agent j’s
position in the grid within j’s DIDs at time step t+1. Consequently, the model node,M t+1

j,0 ,
contains more models of j and i’s updated belief on j’s possible DIDs.
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Fig. 23: (a) Level 1 I-ID of agent i in the multiagent Grid domain, (b) two level 0 IDs of
agent j whose decision nodes are mapped to the chance nodes, A1
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the dotted arrows. The two IDs differ in the distribution over the chance node, GridLocation
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Fig. 24: An abstract two time-slice level-1 I-DID for agent i in Grid. The model node con-
tains level 0 DIDs of agent j. At horizon 1, the models of j are IDs.

Figure 26 illustrates the fully factored representation of the level-1 agent i’s I-DID (in
Fig. 24) for Grid.
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Fig. 25: GridX and GridY: Per-agent factors of the composite state space in Grid abstractly

represented by the node GridLocation.

Fig. 26: A fully factored representation of the two time-slice level 1 I-DID for agent i in the

multiagent Grid domain.

7.3 Multi-access Broadcast Channel

A representation of the level-1 I-ID for MABC is shown in Fig. 27. The physical state rep-

resents the status of the each agent’s (i.e., node’s) message buffer, whose size is assumed to

be 1 in our setting. At the start of each time step, each node performs one of two actions:

send a message (S) or wait (W ). After performing an action, the node receives one of two

noisy observations: collision (C) or no-collision (NC), as modeled by the chance node,

SenseCollision. We may unroll the I-ID in Fig. 27 into the corresponding I-DID spanning

two time-slices as shown in Fig. 28.

In agent i’s I-DID, we assign the marginal distribution over the agents’ joint buffer sta-

tus to the CPD of the chance node BufferStatusti. In the next time step, the CPD of Buffer-
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Fig. 28: A two time-slice level 1 I-DID for agent i in the MABC domain. The model node
contains level-0 DIDs of agent j that expand the IDs shown in Fig. 27(b).

Statust+1
i , is the transition function. The CPDs of the chance nodes BufferStatust+1

i , the
observation node SenseCollisiont+1

i , and the utility node Ri are specified according to the
problem described in Section 5. Finally, the CPD of the chance node Mod[M t+1

j ] in the
model node, M t+1

j,l1 , reflects which prior model, action and observation of j results in a
model contained in the model node.
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