447 research outputs found
Flow initiation study for proposed tube wind tunnel, phase I. Appendix - Re-evaluation of candidate systems
Reevaluating flow initiation systems for large tube wind tunne
Isotopic Branchpoints : Linkages and Efficiencies in Carbon and Water Budgets
Forests pass water and carbon through while converting portions to streamflow, soil organic matter, wood production, and other ecosystem services. The efficiencies of these transfers are but poorly quantified. New theory and new instruments have made it possible to use stable isotope composition to provide this quantification of efficiencies wherever there is a measurable difference between the branches of a branchpoint. We present a linked conceptual model that relies on isotopes of hydrogen, carbon, and oxygen to describe these branchpoints along the pathway from precipitation to soil and biomass carbon sequestration and illustrate how it can be tested and generalized. Plain Language Summary The way a forest works can be described in terms of carbon and water budgets, which describe the ways that carbon and water flow through the forest. The paths of such flows are frequently branched and the branches are often different in their stable isotope composition. This means that stable isotopes can be used to describe the branching events. We present isotopic methods of quantifying several such events, then link them in a chain that begins with the evaporation of water and ends with biomass production.Non peer reviewe
Light particle spectra from 35 MeV/nucleon 12C-induced reactions on 197Au
Energy spectra for p, d, t, 3He, 4He, and 6He from the reaction 12C+197Au at 35 MeV/nucleon are presented. A common intermediate rapidity source is identified using a moving source fit to the spectra that yields cross sections which are compared to analogous data at other bombarding energies and to several different models. The excitation function of the composite to proton ratios is compared with quantum statistical, hydrodynamic, and thermal models
APOGEE DR14/DR15 Abundances in the Inner Milky Way
We present an overview of the distributions of 11 elemental abundances in the
Milky Way's inner regions, as traced by APOGEE stars released as part of SDSS
Data Release 14/15 (DR14/DR15), including O, Mg, Si, Ca, Cr, Mn, Co, Ni, Na,
Al, and K. This sample spans ~4000 stars with R_GC<4 kpc, enabling the most
comprehensive study to date of these abundances and their variations within the
innermost few kiloparsecs of the Milky Way. We describe the observed abundance
patterns ([X/Fe]-[Fe/H]), compare to previous literature results and to
patterns in stars at the solar Galactic radius, and discuss possible trends
with DR14/DR15 effective temperatures. We find that the position of the
[Mg/Fe]-[Fe/H] "knee" is nearly constant with R_GC, indicating a well-mixed
star-forming medium or high levels of radial migration in the early inner
Galaxy. We quantify the linear correlation between pairs of elements in
different subsamples of stars and find that these relationships vary; some
abundance correlations are very similar between the alpha-rich and alpha-poor
stars, but others differ significantly, suggesting variations in the
metallicity dependencies of certain supernova yields. These empirical trends
will form the basis for more detailed future explorations and for the
refinement of model comparison metrics. That the inner Milky Way abundances
appear dominated by a single chemical evolutionary track and that they extend
to such high metallicities underscore the unique importance of this part of the
Galaxy for constraining the ingredients of chemical evolution modeling and for
improving our understanding of the evolution of the Galaxy as a whole.Comment: Submitted to AAS Journals; revised after referee repor
Estimating Heritabilities and Genetic Correlations: Comparing the ‘Animal Model’ with Parent-Offspring Regression Using Data from a Natural Population
Quantitative genetic parameters are nowadays more frequently estimated with restricted maximum likelihood using the ‘animal model’ than with traditional methods such as parent-offspring regressions. These methods have however rarely been evaluated using equivalent data sets. We compare heritabilities and genetic correlations from animal model and parent-offspring analyses, respectively, using data on eight morphological traits in the great reed warbler (Acrocephalus arundinaceus). Animal models were run using either mean trait values or individual repeated measurements to be able to separate between effects of including more extended pedigree information and effects of replicated sampling from the same individuals. We show that the inclusion of more pedigree information by the use of mean traits animal models had limited effect on the standard error and magnitude of heritabilities. In contrast, the use of repeated measures animal model generally had a positive effect on the sampling accuracy and resulted in lower heritabilities; the latter due to lower additive variance and higher phenotypic variance. For most trait combinations, both animal model methods gave genetic correlations that were lower than the parent-offspring estimates, whereas the standard errors were lower only for the mean traits animal model. We conclude that differences in heritabilities between the animal model and parent-offspring regressions were mostly due to the inclusion of individual replicates to the animal model rather than the inclusion of more extended pedigree information. Genetic correlations were, on the other hand, primarily affected by the inclusion of more pedigree information. This study is to our knowledge the most comprehensive empirical evaluation of the performance of the animal model in relation to parent-offspring regressions in a wild population. Our conclusions should be valuable for reconciliation of data obtained in earlier studies as well as for future meta-analyses utilizing estimates from both traditional methods and the animal model
Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils
Background
Knowledge of biological and climatic controls in terrestrial nitrogen (N) cycling within and across ecosystems is central to understanding global patterns of key ecosystem processes. The ratios of 15N:14N in plants and soils have been used as indirect indices of N cycling parameters, yet our understanding of controls over N isotope ratios in plants and soils is still developing.
Scope
In this review, we provide background on the main processes that affect plant and soil N isotope ratios. In a similar manner to partitioning the roles of state factors and interactive controls in determining ecosystem traits, we review N isotopes patterns in plants and soils across a number of proximal factors that influence ecosystem properties as well as mechanisms that affect these patterns. Lastly, some remaining questions that would improve our understanding of N isotopes in terrestrial ecosystems are highlighted.
Conclusion
Compared to a decade ago, the global patterns of plant and soil N isotope ratios are more resolved. Additionally, we better understand how plant and soil N isotope ratios are affected by such factors as mycorrhizal fungi, climate, and microbial processing. A comprehensive understanding of the N cycle that ascribes different degrees of isotopic fractionation for each step under different conditions is closer to being realized, but a number of process-level questions still remain
- …