798 research outputs found

    The Empirical Mass-Luminosity Relation for Low Mass Stars

    Full text link
    This work is devoted to improving empirical mass-luminosity relations and mass-metallicity-luminosity relation for low mass stars. For these stars, observational data in the mass-luminosity plane or the mass-metallicity-luminosity space subject to non-negligible errors in all coordinates with different dimensions. Thus a reasonable weight assigning scheme is needed for obtaining more reliable results. Such a scheme is developed, with which each data point can have its own due contribution. Previous studies have shown that there exists a plateau feature in the mass-luminosity relation. Taking into account the constraints from the observational luminosity function, we find by fitting the observational data using our weight assigning scheme that the plateau spans from 0.28 to 0.50 solar mass. Three-piecewise continuous improved mass-luminosity relations in K, J, H and V bands, respectively, are obtained. The visual mass-metallicity-luminosity relation is also improved based on our K band mass-luminosity relation and the available observational metallicity data.Comment: 8 pages, 2 figures. Accepted for publication in Astrophysics & Space Scienc

    Measurement of Aerosols at the Pierre Auger Observatory

    Full text link
    The air fluorescence detectors (FDs) of the Pierre Auger Observatory are vital for the determination of the air shower energy scale. To compensate for variations in atmospheric conditions that affect the energy measurement, the Observatory operates an array of monitoring instruments to record hourly atmospheric conditions across the detector site, an area exceeding 3,000 square km. This paper presents results from four instruments used to characterize the aerosol component of the atmosphere: the Central Laser Facility (CLF), which provides the FDs with calibrated laser shots; the scanning backscatter lidars, which operate at three FD sites; the Aerosol Phase Function monitors (APFs), which measure the aerosol scattering cross section at two FD locations; and the Horizontal Attenuation Monitor (HAM), which measures the wavelength dependence of aerosol attenuation.Comment: Contribution to the 30th International Cosmic Ray Conference, Merida Mexico, July 2007; 4 pages, 4 figure

    Spacings of Quarkonium Levels with the Same Principal Quantum Number

    Get PDF
    The spacings between bound-state levels of the Schr\"odinger equation with the same principal quantum number NN but orbital angular momenta \ell differing by unity are found to be nearly equal for a wide range of power potentials V=λrνV = \lambda r^\nu, with ENF(ν,N)G(ν,N)E_{N \ell} \approx F(\nu, N) - G(\nu,N) \ell. Semiclassical approximations are in accord with this behavior. The result is applied to estimates of masses for quarkonium levels which have not yet been observed, including the 2P ccˉc \bar c states and the 1D bbˉb \bar b states.Comment: 20 pages, latex, 3 uuencoded figures submitted separately (process using psfig.sty

    Precision measurements of the total and partial widths of the psi(2S) charmonium meson with a new complementary-scan technique in antiproton-proton annihilations

    Full text link
    We present new precision measurements of the psi(2S) total and partial widths from excitation curves obtained in antiproton-proton annihilations by Fermilab experiment E835 at the Antiproton Accumulator in the year 2000. A new technique of complementary scans was developed to study narrow resonances with stochastically cooled antiproton beams. The technique relies on precise revolution-frequency and orbit-length measurements, while making the analysis of the excitation curve almost independent of machine lattice parameters. We study the psi(2S) meson through the processes pbar p -> e+ e- and pbar p -> J/psi + X -> e+ e- + X. We measure the width to be Gamma = 290 +- 25(sta) +- 4(sys) keV and the combination of partial widths Gamma_e+e- * Gamma_pbarp / Gamma = 579 +- 38(sta) +- 36(sys) meV, which represent the most precise measurements to date.Comment: 17 pages, 3 figures, 3 tables. Final manuscript accepted for publication in Phys. Lett. B. Parts of the text slightly expanded or rearranged; results are unchange

    Absolute dimensions of eclipsing binaries. XXVI, Setting a new standard : masses, radii, and abundances for the F-type systems AD Bootis, VZ Hydrae, and WZ Ophiuchi

    Get PDF
    Context. Accurate mass, radius, and abundance determinations from binaries provide important information on stellar evolution, fundamental to central fields in modern astrophysics and cosmology. Aims. We aim to determine absolute dimensions and abundances for the three F-type main-sequence detached eclipsing binaries ADBoo, VZHya, and WZOph and to perform a detailed comparison with results from recent stellar evolutionary models. Methods. uvby light curves and uvbyβ standard photometry were obtained with the Strömgren Automatic Telescope at ESO, La Silla, radial velocity observations at CfA facilities, and supplementary high-resolution spectra with ESO’s FEROS spectrograph. State-ofthe-art methods were applied for the analyses: the EBOP andWilson-Devinney binary models, two-dimensional cross-correlation and disentangling, and the VWA abundance analysis tool. Results. Masses and radii that are precise to 0.5–0.7% and 0.4–0.9%, respectively, have been established for the components, which span the ranges of 1.1 to 1.4 M and 1.1 to 1.6 R. The [Fe/H] abundances are from –0.27 to +0.10, with uncertainties between 0.07 and 0.15 dex. We find indications of a slight α-element overabundance of [α/Fe] ∼ +0.1 for WZOph. The secondary component of ADBoo and both components of WZOph appear to be slightly active. Yale-Yonsai and Victoria-Regina evolutionary models fit the components of ADBoo and VZHya almost equally well, assuming coeval formation, at ages of about 1.75/1.50 Gyr (ADBoo) and 1.25/1.00 Gyr (VZHya). BaSTI models, however, predict somewhat different ages for the primary and secondary components. For WZOph, the models from all three grids are significantly hotter than observed. A low He content, decreased envelope convection coupled with surface activity, and/or higher interstellar absorption would remove the discrepancy, but its cause has not been definitively identified. Conclusions. We have demonstrated the power of testing and comparing recent stellar evolutionary models using eclipsing binaries, provided their abundances are known. The strongest limitations and challenges are set by Teff and interstellar absorption determinations, and by their effects on and correlation with abundance results

    The large-scale ionised outflow of CH Cygni

    Get PDF
    HST and ground-based [OII} and [NII] images obtained from 1996 to 1999 reveal the existence of a ionised optical nebula around the symbiotic binary CH Cyg extending out to 5000 A.U. from the central stars. The observed velocity range of the nebula, derived from long-slit echelle spectra, is of 130 km/s. In spite of its complex appearence, the velocity data show that the basic morphology of the inner regions of the optical nebula is that of a bipolar (or conical) outflow extending nearly along the plane of the sky out to some 2000 A.U. from the centre. Even if the extension of this bipolar outflow and its position angle are consistent with those of the radio jet produced in 1984 (extrapolated to the time of our optical imagery), no obvious counterpart is visible of the original, dense radio bullets ejected by the system. We speculate that the optical bipolar outflow might be the remannt of the interaction of the bullets with a relatively dense circumstellar medium.Comment: 8 text pages + 3 figures (jpeg). ApJ in press. For a full PostScript version with figures inline see ftp://ftp.ll.iac.es/pub/research/preprints/PP252001.ps.g

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    The Pierre Auger Observatory III: Other Astrophysical Observations

    Full text link
    Astrophysical observations of ultra-high-energy cosmic rays with the Pierre Auger ObservatoryComment: Contributions to the 32nd International Cosmic Ray Conference, Beijing, China, August 201

    The Lidar System of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory in Malargue, Argentina, is designed to study the origin of ultrahigh energy cosmic rays with energies above 10^18 eV. The energy calibration of the detector is based on a system of four air fluorescence detectors. To obtain reliable calorimetric information from the fluorescence stations, the atmospheric conditions at the experiment's site need to be monitored continuously during operation. One of the components of the observatory's atmospheric monitoring system is a set of four elastic backscatter lidar stations, one station at each of the fluorescence detector sites. This paper describes the design, current status, standard operation procedure, and performance of the lidar system of the Pierre Auger Observatory
    corecore