75 research outputs found
-minimal surface and manifold with positive -Bakry-\'{E}mery Ricci curvature
In this paper, we first prove a compactness theorem for the space of closed
embedded -minimal surfaces of fixed topology in a closed three-manifold with
positive Bakry-\'{E}mery Ricci curvature. Then we give a Lichnerowicz type
lower bound of the first eigenvalue of the -Laplacian on compact manifold
with positive -Bakry-\'{E}mery Ricci curvature, and prove that the lower
bound is achieved only if the manifold is isometric to the -shpere, or the
-dimensional hemisphere. Finally, for compact manifold with positive
-Bakry-\'{E}mery Ricci curvature and -mean convex boundary, we prove an
upper bound for the distance function to the boundary, and the upper bound is
achieved if only if the manifold is isometric to an Euclidean ball.Comment: 15 page
Semiparametric theory and empirical processes in causal inference
In this paper we review important aspects of semiparametric theory and
empirical processes that arise in causal inference problems. We begin with a
brief introduction to the general problem of causal inference, and go on to
discuss estimation and inference for causal effects under semiparametric
models, which allow parts of the data-generating process to be unrestricted if
they are not of particular interest (i.e., nuisance functions). These models
are very useful in causal problems because the outcome process is often complex
and difficult to model, and there may only be information available about the
treatment process (at best). Semiparametric theory gives a framework for
benchmarking efficiency and constructing estimators in such settings. In the
second part of the paper we discuss empirical process theory, which provides
powerful tools for understanding the asymptotic behavior of semiparametric
estimators that depend on flexible nonparametric estimators of nuisance
functions. These tools are crucial for incorporating machine learning and other
modern methods into causal inference analyses. We conclude by examining related
extensions and future directions for work in semiparametric causal inference
From marine bands to hybrid flows: sedimentology of a Mississippian black shale
Organic‐rich mudstones have long been of interest as conventional and unconventional source rocks and are an important organic carbon sink. Yet the processes that deposited organic‐rich muds in epicontinental seaways are poorly understood, partly because few modern analogues exist. This study investigates the processes that transported and deposited sediment and organic matter through part of the Bowland Shale Formation, from the Mississippian Rheic–Tethys seaway. Field to micron‐scale sedimentological analysis reveals a heterogeneous succession of carbonate‐rich, siliceous, and siliciclastic, argillaceous muds. Deposition of these facies at basinal and slope locations was moderated by progradation of the nearby Pendle delta system, fourth‐order eustatic sea‐level fluctuation and localized block and basin tectonism. Marine transgressions deposited bioclastic ‘marine band’ (hemi)pelagic packages. These include abundant euhaline macrofaunal tests, and phosphatic concretions of organic matter and radiolarian tests interpreted as faecal pellets sourced from a productive water column. Lens‐rich (lenticular) mudstones, hybrid, debrite and turbidite beds successively overlie marine band packages and suggest reducing basin accommodation promoted sediment deposition via laminar and hybrid flows sourced from the basin margins. Mud lenses in lenticular mudstones lack organic linings and bioclasts and are equant in early‐cemented lenses and in plan‐view, and are largest and most abundant in mudstones overlying marine band packages. Thus, lenses likely represent partially consolidated mud clasts that were scoured and transported in bedload from the shelf or proximal slope, as a ‘shelf to basin’ conveyor, during periods of reduced basin accommodation. Candidate in situ microbial mats in strongly lenticular mudstones, and as rip‐up fragments in the down‐dip hybrid beds, suggest that these were potentially key biostabilizers of mud. Deltaic mud export was fast, despite the intrabasinal complexity, likely an order of magnitude higher than similar successions deposited in North America. Epicontinental basins remotely linked to delta systems were therefore capable of rapidly accumulating both sediment and organic matter
Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres
Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community
Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7 fb−1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale
The somatic genomic landscape of glioblastoma
We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer
Searches for electroweak neutralino and chargino production in channels with Higgs, Z, and W bosons in pp collisions at 8 TeV
Searches for supersymmetry (SUSY) are presented based on the electroweak pair production of neutralinos and charginos, leading to decay channels with Higgs, Z, and W bosons and undetected lightest SUSY particles (LSPs). The data sample corresponds to an integrated luminosity of about 19.5 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV collected in 2012 with the CMS detector at the LHC. The main emphasis is neutralino pair production in which each neutralino decays either to a Higgs boson (h) and an LSP or to a Z boson and an LSP, leading to hh, hZ, and ZZ states with missing transverse energy (E-T(miss)). A second aspect is chargino-neutralino pair production, leading to hW states with E-T(miss). The decays of a Higgs boson to a bottom-quark pair, to a photon pair, and to final states with leptons are considered in conjunction with hadronic and leptonic decay modes of the Z and W bosons. No evidence is found for supersymmetric particles, and 95% confidence level upper limits are evaluated for the respective pair production cross sections and for neutralino and chargino mass values
Handbook of Econometrics
This paper provides an introduction to the use of empirical process methods in econometrics. These methods can be used to establish the large sample properties of econometric estimators and test statistics. In the first part of the paper, key terminology and results are introduced and discussed heuristically. Applications in the econometrics literature are briefly reviewed. A select set of three classes of applications is discussed in more detail.The second part of the paper shows how one can verify a key property called stochastic equicontinuity. The paper takes several stochastic equicontinuity results from the probability literature, which rely on entropy conditions of one sort or another, and provides primitive sufficient conditions under which the entropy conditions hold. This yields stochastic equicontinuity results that are readily applicable in a variety of contexts. Examples are provided.
- …