233 research outputs found

    Decidable and undecidable problems about quantum automata

    Get PDF
    We study the following decision problem: is the language recognized by a quantum finite automaton empty or non-empty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or non-strict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata for which it is known that strict and non-strict thresholds both lead to undecidable problems.Comment: 10 page

    Quasiperiodicity and non-computability in tilings

    Full text link
    We study tilings of the plane that combine strong properties of different nature: combinatorial and algorithmic. We prove existence of a tile set that accepts only quasiperiodic and non-recursive tilings. Our construction is based on the fixed point construction; we improve this general technique and make it enforce the property of local regularity of tilings needed for quasiperiodicity. We prove also a stronger result: any effectively closed set can be recursively transformed into a tile set so that the Turing degrees of the resulted tilings consists exactly of the upper cone based on the Turing degrees of the later.Comment: v3: the version accepted to MFCS 201

    Rapid cognitive decline, one-year institutional admission and one-year mortality: Analysis of the ability to predict and inter-tool agreement of four validated clinical frailty indexes in the safes cohort

    Get PDF
    Objectives: To evaluate the predictive ability of four clinical frailty indexes as regards one-year rapid cognitive decline (RCD — defined as the loss of at least 3 points on the MMSE score), and one-year institutional admission (IA) and mortality respectively; and to measure their agreement for identifying groups at risk of these severe outcomes. Design: One-year follow-up and multicentre study of old patients participating in the SAFEs cohort study. Setting: Nine university hospitals in France. Participants: 1,306 patients aged 75 or older (mean age 85±6 years; 65% female) hospitalized in medical divisions through an Emergency department. Measurements: Four frailty indexes (Winograd; Rockwood; Donini; and Schoevaerdts) reflecting the multidimensionality of the frailty concept, using an ordinal scoring system able to discriminate different grades of frailty, and constructed based on the accumulation of identified deficits after comprehensive geriatric assessment conducted during the first week of hospital stay, were used to categorize participants into three different grades of frailty: Gl — not frail; G2 — moderately frail; and G3 — severely frail. Comparisons between groups were performed using Fisher's exact test. Agreement between indexes was evaluated using Cohen's Kappa coefficient. Results: All patients were classified as frail by at least one of the four indexes. The Winograd and Rockwood indexes mainly classified subjects as G2 (85% and 96%), and the Donini and Schoevaerdts indexes mainly as G3 (71% and 67%). Among the SAFEs cohort population, 250, 1047 and 1,306 subjects were eligible for analyses of predictability for RCD, 1-year IA and 1-year mortality respectively. At 1 year, 84 subjects (34%) experienced RCD, 377 (36%) were admitted into an institutional setting, and 445 (34%) had died With the Rockwood index, all subjects who expenenced RCD were classified in G2; and in G2 and G3 when the Donini and Schoevaerdts indexes were used No significant difference was found between frailty grade and RCD, whereas frailty grade was significantly associated with an increased risk of IA and death, whatever the frailty index considered. Agreement between the different indexes of frailty was poor with Kappa coefficients ranging from −0.02 to 0.15. Conclusion: These findings confirm the poor clinimetric properties of these current indexes to measure frailty, underlining the fact that further work is needed to develop a better and more widely-accepted definition of frailty and therefore a better understanding of its pathophysiolog

    Computing in the fractal cloud: modular generic solvers for SAT and Q-SAT variants

    Full text link
    Abstract geometrical computation can solve hard combinatorial problems efficiently: we showed previously how Q-SAT can be solved in bounded space and time using instance-specific signal machines and fractal parallelization. In this article, we propose an approach for constructing a particular generic machine for the same task. This machine deploies the Map/Reduce paradigm over a fractal structure. Moreover our approach is modular: the machine is constructed by combining modules. In this manner, we can easily create generic machines for solving satifiability variants, such as SAT, #SAT, MAX-SAT

    The geological cycle of plastics and their use as a stratigraphic indicator of the Anthropocene

    Get PDF
    The rise of plastics since the mid-20th century, both as a material element of modern life and as a growing environmental pollutant, has been widely described. Their distribution in both the terrestrial and marine realms suggests that they are a key geological indicator of the Anthropocene, as a distinctive stratal component. Most immediately evident in terrestrial deposits, they are clearly becoming widespread in marine sedimentary deposits in both shallow- and deep-water settings. They are abundant and widespread as macroscopic fragments and virtually ubiquitous as microplastic particles; these are dispersed by both physical and biological processes, not least via the food chain and the ‘faecal express’ route from surface to sea floor. Plastics are already widely dispersed in sedimentary deposits, and their amount seems likely to grow several-fold over the next few decades. They will continue to be input into the sedimentary cycle over coming millennia as temporary stores – landfill sites – are eroded. Plastics already enable fine time resolution within Anthropocene deposits via the development of their different types and via the artefacts (‘technofossils’) they are moulded into, and many of these may have long-term preservation potential when buried in strata

    The Anthropocene is a prospective epoch/series, not a geological event

    Get PDF
    The Anthropocene defined as an epoch/series within the Geological Time Scale, and with an isochronous inception in the mid-20th century, would both utilize the rich array of stratigraphic signals associated with the Great Acceleration and align with Earth System science analysis from where the term Anthropocene originated. It would be stratigraphically robust and reflect the reality that our planet has far exceeded the range of natural variability for the Holocene Epoch/Series which it would terminate. An alternative, recently advanced, time-transgressive ‘geological event’ definition would decouple the Anthropocene from its stratigraphic characterisation and association with a major planetary perturbation. We find this proposed anthropogenic ‘event’ to be primarily an interdisciplinary concept in which historical, cultural and social processes and their global environmental impacts are all flexibly interpreted within a multi-scalar framework. It is very different from a stratigraphic-methods-based Anthropocene epoch/series designation, but as an anthropogenic phenomenon, if separately defined and differently named, might be usefully complementary to it

    Geochemical Study of Natural CO2 Emissions in the French Massif Central: How to Predict Origin, Processes and Evolution of CO2 Leakage

    Get PDF
    International audienceThis study presents an overview of some results obtained within the French ANR (National Agency of Research) supported GĂ©ocarbone-Monitoring research program. The measurements were performed in Sainte-Marguerite, located in the French Massif Central. This site represents a natural laboratory for CO2/fluid/rock interactions studies, as well as CO2 migration mechanisms towards the surface. The CO2 leaking character of the studied area also allows to test and validate measurements methods and verifications for the future CO2 geological storage sites. During these surveys, we analyzed soil CO2 fluxes and concentrations. We sampled and analyzed soil gases, and gas from carbo-gaseous bubbling springs. A one-month continuous monitoring was also tested, to record the concentration of CO2 both in atmosphere and in the soil at a single point. We also developed a new methodology to collect soil gas samples for noble gas abundances and isotopic analyses, as well as carbon isotopic ratios. Our geochemical results, combined with structural geology, show that the leaking CO2 has a very deep origin, partially mantle derived. The gas rises rapidly along normal and strike-slip active faults. CO2 soil concentrations (also showing a mantle derived component) and CO2 fluxes are spatially variable, and reach high values. The recorded atmospheric CO2 is not very high, despite the important CO2 degassing throughout the whole area

    The Anthropocene is functionally and stratigraphically distinct from the Holocene

    Get PDF
    Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments − including aluminum, plastics and concrete − coincides with global spikes in fallout radionuclides and particulates from fossil-fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the last century. Rates of sea-level rise, and the extent of human perturbation of the climate system, exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs

    Colonization of the Americas, 'Little Ice Age' climate, and bomb-produced carbon: their role in defining the Anthropocene

    Get PDF
    A recently published analysis by Lewis and Maslin (Lewis SL and Maslin MA (2015) Defining the Anthropocene. Nature 519: 171–180) has identified two new potential horizons for the Holocene−Anthropocene boundary: 1610 (associated with European colonization of the Americas), or 1964 (the peak of the excess radiocarbon signal arising from atom bomb tests). We discuss both of these novel suggestions, and consider that there is insufficient stratigraphic basis for the former, whereas placing the latter at the peak of the signal rather than at its inception does not follow normal stratigraphical practice. Wherever the boundary is eventually placed, it should be optimized to reflect stratigraphical evidence with the least possible ambiguity

    Early to middle Eocene history of the Arctic Ocean from Nd-Sr isotopes in fossil fish debris, Lomonosov Ridge

    Get PDF
    Strontium and neodymium radiogenic isotope ratios in early to middle Eocene fossil fish debris (ichthyoliths) from Lomonosov Ridge (Integrated Ocean Drilling Program Expedition 302) help constrain water mass compositions in the Eocene Arctic Ocean between ∌55 and ∌45 Ma. The inferred paleodepositional setting was a shallow, offshore marine to marginal marine environment with limited connections to surrounding ocean basins. The new data demonstrate that sources of Nd and Sr in fish debris were distinct from each other, consistent with a salinity-stratified water column above Lomonosov Ridge in the Eocene. The 87Sr/86Sr values of ichthyoliths (0.7079–0.7087) are more radiogenic than Eocene seawater, requiring brackish to fresh water conditions in the environment where fish metabolized Sr. The 87Sr/86Sr variations probably record changes in the overall balance of river Sr flux to the Eocene Arctic Ocean between ∌55 and ∌45 Ma and are used here to reconstruct surface water salinity values. The ɛNd values of ichthyoliths vary between −5.7 and −7.8, compatible with periodic (or intermittent) supply of Nd to Eocene Arctic intermediate water (AIW) from adjacent seas. Although the Norwegian-Greenland Sea and North Atlantic Ocean were the most likely sources of Eocene AIW Nd, input from the Tethys Sea (via the Turgay Strait in early Eocene time) and the North Pacific Ocean (via a proto-Bering Strait) also contributed
    • 

    corecore