2,161 research outputs found
Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector
The concept of capacitive coupling between sensors and readout chips is under
study for the vertex detector at the proposed high-energy CLIC electron
positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an
active High-Voltage CMOS sensor, designed to be capacitively coupled to the
CLICpix2 readout chip. The chip is implemented in a commercial nm HV-CMOS
process and contains a matrix of square pixels with m
pitch. First prototypes have been produced with a standard resistivity of
cm for the substrate and tested in standalone mode. The
results show a rise time of ns, charge gain of mV/ke and
e RMS noise for a power consumption of W/pixel. The
main design aspects, as well as standalone measurement results, are presented.Comment: 13 pages, 13 figures, 2 tables. Work carried out in the framework of
the CLICdp collaboratio
Les temps de la consultation du comité d’entreprise
The DD4HEP detector description toolkit offers a flexible and easy-to-use solution for the consistent and complete description of particle physics detectors in a single system. The sub-component DDREC provides a dedicated interface to the detector geometry as needed for event reconstruction. With DDREC there is no need to define an additional, separate reconstruction geometry as is often done in HEP, but one can transparently extend the existing detailed simulation model to be also used for the reconstruction. Based on the extension mechanism of DD4HEP, DDREC allows one to attach user defined data structures to detector elements at all levels of the geometry hierarchy. These data structures define a high level view onto the detectors describing their physical properties, such as measurement layers, point resolutions, and cell sizes. For the purpose of charged particle track reconstruction, dedicated surface objects can be attached to every volume in the detector geometry. These surfaces provide the measurement directions, local-to-global coordinate transformations, and material properties. The material properties, essential for the correct treatment of multiple scattering and energy loss effects in charged particle reconstruction, are automatically averaged from the detailed geometry model along the normal of the surface. Additionally, a generic interface allows the user to query material properties at any given point or between any two points in the detector's world volume. In this paper we will present DDREC and how it is used together with the linear collider tracking software and the particle-flow package PANDORAPFA for full event reconstruction of the ILC detector concepts ILD and SiD, and of CLICdp. This flexible tool chain is also well suited for other future accelerator projects such as FCC and CEPC
HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results
In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology.
In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given
Characterisation of Medipix3 Silicon Detectors in a Charged-Particle Beam
While designed primarily for X-ray imaging applications, the Medipix3 ASIC
can also be used for charged-particle tracking. In this work, results from a
beam test at the CERN SPS with irradiated and non-irradiated sensors are
presented and shown to be in agreement with simulation, demonstrating the
suitability of the Medipix3 ASIC as a tool for characterising pixel sensors.Comment: 16 pages, 13 figure
Radiation-hard active pixel sensors for HL-LHC detector upgrades based on HV-CMOS technology
Luminosity upgrades are discussed for the LHC (HL-LHC) which would make updates to the detectors necessary, requiring in particular new, even more radiation-hard and granular, sensors for the inner detector region.
A proposal for the next generation of inner detectors is based on HV-CMOS: a new family of silicon sensors based on commercial high-voltage CMOS technology, which enables the fabrication of part of the pixel electronics inside the silicon substrate itself.
The main advantages of this technology with respect to the standard silicon sensor technology are: low material budget, fast charge collection time, high radiation tolerance, low cost and operation at room temperature.
A traditional readout chip is still needed to receive and organize the data from the active sensor and to handle high-level functionality such as trigger management. HV-CMOS has been designed to be compatible with both pixel and strip readout.
In this paper an overview of HV2FEI4, a HV-CMOS prototype in 180 nm AMS technology, will be given. Preliminary results after neutron and X-ray irradiation are shown
Measurements of the branching fractions of B+→ppK+ decays
The branching fractions of the decay B+ → pp̄K+ for different intermediate states are measured using data, corresponding to an integrated luminosity of 1.0 fb-1, collected by the LHCb experiment. The total branching fraction, its charmless component Mpp̄ < 2.85 GeV/c2 and the branching fractions via the resonant cc̄ states η c(1S) and ψ(2S) relative to the decay via a J/ψ intermediate state are [Equation not available: see fulltext.] Upper limits on the B + branching fractions into the η c(2S) meson and into the charmonium-like states X(3872) and X(3915) are also obtained
Search for the rare decays and
A search for the rare decay of a or meson into the final
state is performed, using data collected by the LHCb experiment
in collisions at and TeV, corresponding to an integrated
luminosity of 3 fb. The observed number of signal candidates is
consistent with a background-only hypothesis. Branching fraction values larger
than for the decay mode are
excluded at 90% confidence level. For the decay
mode, branching fraction values larger than are excluded at
90% confidence level, this is the first branching fraction limit for this
decay.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-044.htm
A model-independent confirmation of the state
The decay is analyzed using of
collision data collected with the LHCb detector. A model-independent
description of the mass spectrum is obtained, using as input the
mass spectrum and angular distribution derived directly from data,
without requiring a theoretical description of resonance shapes or their
interference. The hypothesis that the mass spectrum can be
described in terms of reflections alone is rejected with more than
8 significance. This provides confirmation, in a model-independent way,
of the need for an additional resonant component in the mass region of the
exotic state.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-038.htm
A study of violation in () with the modes , and
An analysis of the decays of and is presented in which the meson is reconstructed in
the three-body final states , and . Using data from LHCb corresponding to an integrated luminosity of
3.0 fb of collisions, measurements of several observables are
performed. First observations are obtained of the suppressed ADS decay and the quasi-GLW decay . The results are interpreted in the
context of the unitarity triangle angle and related parameters
- …
