325 research outputs found
Preliminary measurements of lumbar spine kinematics and stiffness
The purpose of the presented study was the experimental measurement of lumbar spine stiffness and its range of motion. The dependence of torsion moment of lumbar spine segment on deflection of flexion, extension and torsion was observed during experiments. Stiffness of spine segment was determined from measured data. Human lumbar spine was used for verification of the experimental technique. The sample consisted of one lumbar vertebrae composed by five vertebral bodies and four intervertebral discs. All muscles were removed, however all ligaments were preserved. Experiments were ca rried out on the test system MTS 858.2 MiniBionix, where loading by axial force and torsion moment is possible at the same time. Special Modular Bionix Spine Test Fixator, attached to the test system was used for the measurements. Loading was controlled kinematically (gradual turning) by keeping the axial force equal zero. Measurement was timedependent. The results of these experiments are going to be used as input data for creating a model of artificial lumbar spine and new type of artificial disc replacement
Quasiperiodic oscillations in a strong gravitational field around neutron stars testing braneworld models
The strong gravitational field of neutron stars in the brany universe could
be described by spherically symmetric solutions with a metric in the exterior
to the brany stars being of the Reissner-Nordstrom type containing a brany
tidal charge representing the tidal effect of the bulk spacetime onto the star
structure. We investigate the role of the tidal charge in orbital models of
high-frequency quasiperiodic oscillations (QPOs) observed in neutron star
binary systems. We focus on the relativistic precession model. We give the
radial profiles of frequencies of the Keplerian (vertical) and radial epicyclic
oscillations. We show how the standard relativistic precession model modified
by the tidal charge fits the observational data, giving estimates of the
allowed values of the tidal charge and the brane tension based on the processes
going in the vicinity of neutron stars. We compare the strong field regime
restrictions with those given in the weak-field limit of solar system
experiments.Comment: 26 pages, 6 figure
Investigation of magneto-structural phase transition in FeRh by reflectivity and transmittance measurements in visible and near-infrared spectral region
Magneto-structural phase transition in FeRh epitaxial layers was studied optically. It is shown that the transition between the low-temperature antiferromagnetic phase and the high-temperature ferromagnetic phase is accompanied by a rather large change of the optical response in the visible and near-infrared spectral ranges. This change is consistent with ab initio calculations of reflectivity and transmittance. Phase transition temperatures in a series of FeRh films with thicknesses ranging from 6 to 100 nm is measured thereby demonstrating the utility of the method to quickly characterise samples. Spatially resolved imaging of their magnetic properties with a micrometer resolution shows that the phase transition occurs at different temperatures in different parts of the sample
Novel Colicin F-Y of Yersinia frederiksenii Inhibits Pathogenic Yersinia Strains via YiuR-Mediated Reception, TonB Import, and Cell Membrane Pore Formation
A novel colicin type, designated colicin F-Y, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin F-Y was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin F-Y activity gene (cfyA) and the colicin F-Y immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin F-Y was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin F-Y-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin F-Y receptor molecule. Introduction of the yiuR gene into the colicin F-Y-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin F-Y. In contrast, the colicin F-Y-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin F-Y only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins F-Y and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin F-Y and colicin Ib producers suggest a common evolutionary origin of the colicin F-Y-YiuR and colicin Ib-Cir systems
Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size
PLGA (poly d,l-lactic-co-glycolic acid) nanoparticles (NPs) encapsulating magnetite nanoparticles (MNPs) along with a model drug human serum albumin (HSA) were prepared by double emulsion solvent evaporation method. This Part I will focus on size and size distribution of prepared NPs, whereas encapsulation efficiency will be discussed in Part II. It was found that mean hydrodynamic particle size was influenced by five important process variables. To explore their effects, a five-factorial, three-level experimental design and statistical analysis were carried out using STATISTICA® software. Effect of process variables on the mean size of nanoparticles was investigated and finally conditions to minimize size of NPs were proposed. GAMS™/MINOS software was used for optimization. The mean hydrodynamic size of nanoparticles ranged from 115 to 329 nm depending on the process conditions. Smallest possible mean particle size can be achieved by using low polymer concentration and high dispersion energy (enough sonication time) along with small aqueous/organic volume ratio
Foundations of Black Hole Accretion Disk Theory
This review covers the main aspects of black hole accretion disk theory. We
begin with the view that one of the main goals of the theory is to better
understand the nature of black holes themselves. In this light we discuss how
accretion disks might reveal some of the unique signatures of strong gravity:
the event horizon, the innermost stable circular orbit, and the ergosphere. We
then review, from a first-principles perspective, the physical processes at
play in accretion disks. This leads us to the four primary accretion disk
models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin)
disks, slim disks, and advection-dominated accretion flows (ADAFs). After
presenting the models we discuss issues of stability, oscillations, and jets.
Following our review of the analytic work, we take a parallel approach in
reviewing numerical studies of black hole accretion disks. We finish with a few
select applications that highlight particular astrophysical applications:
measurements of black hole mass and spin, black hole vs. neutron star accretion
disks, black hole accretion disk spectral states, and quasi-periodic
oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at
http://www.livingreviews.org/lrr-2013-
Biochars in soils : towards the required level of scientific understanding
Key priorities in biochar research for future guidance of sustainable policy development have been identified by expert assessment within the COST Action TD1107. The current level of scientific understanding (LOSU) regarding the consequences of biochar application to soil were explored. Five broad thematic areas of biochar research were addressed: soil biodiversity and ecotoxicology, soil organic matter and greenhouse gas (GHG) emissions, soil physical properties, nutrient cycles and crop production, and soil remediation. The highest future research priorities regarding biochar's effects in soils were: functional redundancy within soil microbial communities, bioavailability of biochar's contaminants to soil biota, soil organic matter stability, GHG emissions, soil formation, soil hydrology, nutrient cycling due to microbial priming as well as altered rhizosphere ecology, and soil pH buffering capacity. Methodological and other constraints to achieve the required LOSU are discussed and options for efficient progress of biochar research and sustainable application to soil are presented.Peer reviewe
Multicopy plasmid integration in Komagataella phaffii mediated by a defective auxotrophic marker
Background: A commonly used approach to improve recombinant protein production is to increase the levels of expression by providing extra-copies of a heterologous gene. In Komagataella phaffii (Pichia pastoris) this is usually accomplished by transforming cells with an expression vector carrying a drug resistance marker following a screening for multicopy clones on plates with increasingly higher concentrations of an antibiotic. Alternatively, defective auxotrophic markers can be used for the same purpose. These markers are generally transcriptionally impaired genes lacking most of the promoter region. Among the defective markers commonly used in Saccharomyces cerevisiae is leu2-d, an allele of LEU2 which is involved in leucine metabolism. Cells transformed with this marker can recover prototrophy when they carry multiple copies of leu2-d in order to compensate the poor transcription from this defective allele. Results: A K. phaffii strain auxotrophic for leucine (M12) was constructed by disrupting endogenous LEU2. The resulting strain was successfully transformed with a vector carrying leu2-d and an EGFP (enhanced green fluorescent protein) reporter gene. Vector copy numbers were determined from selected clones which grew to different colony sizes on transformation plates. A direct correlation was observed between colony size, number of integrated vectors and EGFP production. By using this approach we were able to isolate genetically stable clones bearing as many as 20 integrated copies of the vector and with no significant effects on cell growth. Conclusions: In this work we have successfully developed a genetic system based on a defective auxotrophic which can be applied to improve heterologous protein production in K. phaffii. The system comprises a K. phaffii leu2 strain and an expression vector carrying the defective leu2-d marker which allowed the isolation of multicopy clones after a single transformation step. Because a linear correlation was observed between copy number and heterologous protein production, this system may provide a simple approach to improve recombinant protein productivity in K. phaffii
Recommended from our members
European Global Product Realisation: Creativity and Innovation in Educating Engineers and Product Designers of 21st Century
COllaborative DEsign in Virtual Environment (CODEVE) is a teaching methodology developed within the European Global Product Realization (EGPR) course over a number of years. Today’s products are global and our students engage in their early professional practice facing challenges of working within distributed organisations to develop global products. Following early research on methods and tools in educating students for such challenges, the Global Product realisation course was initiated at the dawn of 21st Century and was performed since then as a collabo ration between European Universities. Each year, an Academic Virtual Enterprise of participating Universities and an Industrial partner is formed in which students are distributed in international teams formed from multiple partner Universities. Educa tional activities and the project tasks are primarily communicated through video conferencing and other synchronous and asynchronous means of communication. The design process model applied in CODEVE originates from the model of Pahl and Beitz, but is extended and adapted to suit the fuzzy front end of design projects performed in academic virtual enterprises. The extensions are related to creating a vision and implementing design research methodologies at the start of the project, blending phases of embodiment and detail design as well as bringing students for the first time in the final workshop which is aimed to culminate with the working prototype and public presentations of the products. The CODEVE methodology was tested on projects which include design of consumer products, service driven products and industrial machinery. The evaluation of the methodology was supported by the Erasmus + funded project called Networked Activities for Realization of Innovative Products (NARIP) from 2015-2017. The CODEVE teaching methodology enables students to work on an industrial project, it encourages them to understand and explore methods from other disciplines and helps them to overcome barriers of distributed environment. Similarly, they realise that communication style, relationships with teammates, and the availability and clarity of shared information play a crucial role in the realisation of the project. The CODEVE methodology has been implemented in academic institutions in Europe and tested in both European and transatlantic projects with Universities from Europe and America. This chapter outlines advantages and challenges in conducting this type of educational projects including the influence of the selection of product, industrial partners, marketing, implementation etc
Between proper and strong edge-colorings of subcubic graphs
In a proper edge-coloring the edges of every color form a matching. A
matching is induced if the end-vertices of its edges induce a matching. A
strong edge-coloring is an edge-coloring in which the edges of every color form
an induced matching. We consider intermediate types of edge-colorings, where
edges of some colors are allowed to form matchings, and the remaining form
induced matchings. Our research is motivated by the conjecture proposed in a
recent paper of Gastineau and Togni on S-packing edge-colorings (On S-packing
edge-colorings of cubic graphs, Discrete Appl. Math. 259 (2019), 63-75)
asserting that by allowing three additional induced matchings, one is able to
save one matching color. We prove that every graph with maximum degree 3 can be
decomposed into one matching and at most 8 induced matchings, and two matchings
and at most 5 induced matchings. We also show that if a graph is in class I,
the number of induced matchings can be decreased by one, hence confirming the
above-mentioned conjecture for class I graphs
- …
