204 research outputs found

    RECAP – A Framework to Support Structured Reflection in Engineering Projects

    Full text link
    Reflection is understood as an integral part of designing and design processes. Despite the high relevance and an ongoing discussion about agile engineering, we found that reflection is rarley established in industrial practice. There is a need for an approach structuring the wide range of levels, stakeholders, objects and timing of reflections. The introduced RECAP framework is an important step towards a guideline (heuristic) for reflection in engineering projects. Based on the four dimensions objectives, stakeholders, objects, and processes it supports structured planning of reflection

    Resolved 24.5 micron emission from massive young stellar objects

    Full text link
    Massive young stellar objects (MYSO) are surrounded by massive dusty envelopes. Our aim is to establish their density structure on scales of ~1000 AU, i.e. a factor 10 increase in angular resolution compared to similar studies performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5 micron images of 14 well-known massive star formation regions with Subaru/COMICS. The images reveal the presence of discrete MYSO sources which are resolved on arcsecond scales. For many sources, radiative transfer models are capable of satisfactorily reproducing the observations. They are described by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such distributions are shallower than those found on larger scales probed with single-dish (sub)mm studies. Other sources have density laws that are shallower/steeper than p = 1.0 and there is evidence that these MYSOs are viewed near edge-on or near face-on, respectively. The images also reveal a diffuse component tracing somewhat larger scale structures, particularly visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We thus find a flattening of the MYSO envelope density law going from ~10 000 AU down to scales of ~1000 AU. We propose that this may be evidence of rotational support of the envelope (abridged).Comment: 21 pages, accepted for A&

    The origin of mid-infrared emission in massive young stellar objects: multi-baseline VLTI observations of W33A

    Full text link
    The circumstellar structure on 100 AU scales of the massive young stellar object W33A is probed using the VLTI and the MIDI instrument. N-band visibilities on 4 baselines are presented which are inconsistent with a spherically symmetric geometry. The visibility spectra and SED are simultaneously compared to 2D axi-symmetric dust radiative transfer models with a geometry including a rotationally flattened envelope and outflow cavities. We assume an O7.5 ZAMS star as the central source, consistent with the observed bolometric luminosity. The observations are also compared to models with and without (dusty and gaseous) accretion disks. A satisfactory model is constructed which reproduces the visibility spectra for each (u,v) point. It fits the silicate absorption, the mid-IR slope, the far-infrared peak, and the (sub)mm of the SED. It produces a 350 micron morphology consistent with observations. The 10 micron emission on 100 AU scales is dominated by the irradiated walls of the cavity sculpted by the outflow. The visibilities rule out the presence of dust disks with total (gas and dust) masses more than 0.01 Msun. However, optically thick accretion disks, interior to the dust sublimation radius, are allowed to accrete at rates equalling the envelope's mass infall rate (up to 10^(-3) Msun/yr) without substantially affecting the visibilities due to the extinction by the extremely massive envelope of W33A.Comment: Accepted for publication in A&

    Probing the envelopes of massive young stellar objects with diffraction limited mid-infrared imaging

    Full text link
    Massive stars form whilst they are still embedded in dense envelopes. As a result, the roles of rotation, mass loss and accretion in massive star formation are not well understood. This study evaluates the source of the Q-band, lambda=19.5 microns, emission of massive young stellar objects (MYSOs). This allows us to determine the relative importance of rotation and outflow activity in shaping the circumstellar environments of MYSOs on 1000 AU scales. We obtained diffraction limited mid-infrared images of a sample of 20 MYSOs using the VLT/VISIR and Subaru/COMICS instruments. For these 8 m class telescopes and the sample selected, the diffraction limit, ~0.6", corresponds to approximately 1000 AU. We compare the images and the spectral energy distributions (SEDs) observed to a 2D, axis-symmetric dust radiative transfer model that reproduces VLTI/MIDI observations of the MYSO W33A. We vary the inclination, mass infall rate, and outflow opening angle to simultaneously recreate the behaviour of the sample of MYSOs in the spatial and spectral domains. The mid-IR emission of 70 percent of the MYSOs is spatially resolved. In the majority of cases, the spatial extent of their emission and their SEDs can be reproduced by the W33A model featuring an in-falling, rotating dusty envelope with outflow cavities. There is independent evidence that most of the sources which are not fit by the model are associated with ultracompact HII regions and are thus more evolved. We find that, in general, the diverse 20 micron morphology of MYSOs can be attributed to warm dust in the walls of outflow cavities seen at different inclinations. This implies that the warm dust in the outflow cavity walls dominates the Q-band emission of MYSOs. In turn, this emphasises that outflows are an ubiquitous feature of massive star formation.Comment: Accepted for publication in A&A. The images in this version have been compressed. A high resolution version is available on reques

    Degradation of Cry1Ab protein from genetically modified maize (MON810) in relation to total dietary feed proteins in dairy cow digestion

    Get PDF
    To investigate the relative degradation and fragmentation pattern of the recombinant Cry1Ab protein from genetically modified (GM) maize MON810 throughout the gastrointestinal tract (GIT) of dairy cows, a 25 months GM maize feeding study was conducted on 36 lactating Bavarian Fleckvieh cows allocated into two groups (18 cows per group) fed diets containing either GM maize MON810 or nearly isogenic non-GM maize as the respective diet components. All cows were fed a partial total mixed ration (pTMR). During the feeding trial, 8 feed (4 transgenic (T) and 4 non-transgenic (NT) pTMR) and 42 feces (26 T and 18 NT) samples from the subset of cows fed T and NT diets, and at the end of the feeding trial, digesta contents of rumen, abomasum, small intestine, large intestine and cecum were collected after the slaughter of six cows of each feeding group. Samples were analyzed for Cry1Ab protein and total protein using Cry1Ab specific ELISA and bicinchoninic acid assay, respectively. Immunoblot analyses were performed to evaluate the integrity of Cry1Ab protein in feed, digesta and feces samples. A decrease to 44% in Cry1Ab protein concentration from T pTMR to the voided feces (9.40 versus 4.18 μg/g of total proteins) was recorded. Concentrations of Cry1Ab protein in GIT digesta of cows fed T diets varied between the lowest 0.38 μg/g of total proteins in abomasum to the highest 3.84 μg/g of total proteins in rumen. Immunoblot analysis revealed the extensive degradation of recombinant Cry1Ab protein into a smaller fragment of around 34 kDa in GIT. The results of the present study indicate that the recombinant Cry1Ab protein from MON810 is increasingly degraded into a small fragment during dairy cow digestion

    Analysing Industry 4.0 technology-solution dependencies: a support framework for successful Industry 4.0 adoption in the product generation process

    Get PDF
    AbstractIndustry 4.0 (i4.0) is central to advanced manufacturing. Building on novel digital technologies, it enables smart and flexible manufacturing with systems connected across company boundaries and product lifecycle phases. Despite its benefits, the adoption of i4.0 has been limited, especially in small and medium-sized enterprises. A key challenge is the technological complexity of i4.0. While advanced functionality requires technological complexity, it complicates an understanding of which enabling technologies are particularly useful and required. This article presents a framework to support successful i4.0 adoption across the entire product generation process through a systematic matrix-based dependency analysis of i4.0 solutions and underlying i4.0 technologies. Through increasing transparency around technological complexity of i4.0 solutions, this research contributes to a better understanding of which technologies are required for specific i4.0 solutions and which technologies could be strategic enablers for a broad variety of i4.0 applications. Knowing these technological dependencies supports both, the systematic adoption of existing i4.0 solutions and the development of new i4.0 solutions. This also sets the basis for a future socio-technical investigation.</jats:p

    Mechanical stiffness and anisotropy measured by MRE during brain development in the minipig

    Get PDF
    The relationship between brain development and mechanical properties of brain tissue is important, but remains incompletely understood, in part due to the challenges in measuring these properties longitudinally over time. In addition, white matter, which is composed of aligned, myelinated, axonal fibers, may be mechanically anisotropic. Here we use data from magnetic resonance elastography (MRE) and diffusion tensor imaging (DTI) to estimate anisotropic mechanical properties in six female Yucatan minipigs at ages from 3 to 6 months. Fiber direction was estimated from the principal axis of the diffusion tensor in each voxel. Harmonic shear waves in the brain were excited by three different configurations of a jaw actuator and measured using a motion-sensitive MR imaging sequence. Anisotropic mechanical properties are estimated from displacement field and fiber direction data with a finite element- based, transversely-isotropic nonlinear inversion (TI-NLI) algorithm. TI-NLI finds spatially resolved TI material properties that minimize the error between measured and simulated displacement fields. Maps of anisotropic mechanical properties in the minipig brain were generated for each animal at all four ages. These maps show that white matter is more dissipative and anisotropic than gray matter, and reveal significant effects of brain development on brain stiffness and structural anisotropy. Changes in brain mechanical properties may be a fundamental biophysical signature of brain development

    Investigating low data consistency in work planning processes – causes, measures, and opportunities

    Get PDF
    Digital transformation increases the need for interdisciplinary collaboration along the product lifecycle. It is currently hindered by a low data consistency resulting from the use of heterogeneous systems and data models. Especially in work planning, where several data models are combined, this decreases efficiency. Systems Lifecycle management (SysLM) offers a solution to this remedy. However, a sudden switch to SysLM is not possible in brownfields. Thus, it is necessary to examine the challenges and opportunities to derive case-specific measures that enable its adoption in work planning

    How has internet addiction research evolved since the advent of internet gaming disorder? An overview of cyberaddictions from a psychological perspective

    Get PDF
    During the past two decades, Internet addiction (IA) has been the most commonly used term in research into online activities and their influence on the development of behavioral addictions. The aim of this review is to assess the impact of the concept of Internet gaming disorder (IGD), proposed by the American Psychiatric Association, on the scientific literature regarding IA. It presents a bibliometric analysis of the IA literature starting from the time IGD was first proposed, with the objective of observing and comparing the topics that have arisen during this period among the different IA themes researched. The findings demonstrate a steady evolution, particularly regarding publications related to the general aspects of IA: its clinical component, its prevalence and psychometric measures, the growing interest in the contextual factors promoting this addictive behavior, scientific progress in its conceptualization based on existing theoretical models, and neuropsychological studies. Nevertheless, many of the studies (22 %) focus on specific IA behaviors and show heterogeneity among the cyberaddictions, with online gaming (related to IGD) most common, followed by cybersex and social networking. Although research on the general concept of IA continues, investigators have begun to pay attention to the diverse spectrum of specific cyberaddictions and their psychological components

    Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto

    Get PDF
    The origin and population structure of Borrelia burgdorferi sensu stricto (s.s.), the agent of Lyme disease, remain obscure. This tick-transmitted bacterial species occurs in both North America and Europe. We sequenced 17 European isolates (representing the most frequently found sequence types in Europe) and compared these with 17 North American strains. We show that trans-Atlantic exchanges have occurred in the evolutionary history of this species and that a European origin of B. burgdorferi s. s. is marginally more likely than a USA origin. The data further suggest that some European human patients may have acquired their infection in North America. We found three distinct genetically differentiated groups: i) the outgroup species Borrelia bissettii, ii) two divergent strains from Europe, and iii) a group composed of strains from both the USA and Europe. Phylogenetic analysis indicated that different genotypes were likely to have been introduced several times into the same area. Our results demonstrate that irrespective of whether B. burgdorferi s. s. originated in Europe or the USA, later trans-Atlantic exchange(s) have occurred and have shaped the population structure of this genospecies. This study clearly shows the utility of next generation sequencing to obtain a better understanding of the phylogeography of this bacterial species
    corecore