511 research outputs found
Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums
Bias correcting climate models implicitly assumes stationarity of the correction function. This assumption is assessed for regional climate models in a pseudo reality for seasonal mean temperature and precipitation sums. An ensemble of regional climate models for Europe is used, all driven with the same transient boundary conditions. Although this model-dependent approach does not assess all possible bias non-stationarities, conclusions can be drawn for the real world. Generally, biases are relatively stable, and bias correction on average improves climate scenarios. For winter temperature, bias changes occur in the Alps and ice covered oceans caused by a biased forcing sensitivity of surface albedo; for summer temperature, bias changes occur due to a biased sensitivity of cloud cover and soil moisture. Precipitation correction is generally successful, but affected by internal variability in arid climates. As model sensitivities vary considerably in some regions, multi model ensembles are needed even after bias correction.
Key Points:
- Bias correction in general improves future climate simulations
- Cloud cover, soil moisture and albedo changes may cause temperature bias changes
- Precipitation biases in arid regions are affected by internal variabilit
Recommended from our members
A comparison of two identification and tracking methods for polar lows
In this study, we compare two different cyclone-tracking algorithms to detect North Atlantic polar lows, which
are very intense mesoscale cyclones. Both approaches include spatial filtering, detection, tracking and
constraints specific to polar lows. The first method uses digital bandpass-filtered mean sea level pressure
(MSLP) fieldsin the spatial range of 200�600 km and is especially designed for polar lows. The second method
also uses a bandpass filter but is based on the discrete cosine transforms (DCT) and can be applied to MSLP
and vorticity fields. The latter was originally designed for cyclones in general and has been adapted to polar
lows for this study. Both algorithms are applied to the same regional climate model output fields from October
1993 to September 1995 produced from dynamical downscaling of the NCEP/NCAR reanalysis data.
Comparisons between these two methods show that different filters lead to different numbers and locations of
tracks. The DCT is more precise in scale separation than the digital filter and the results of this study suggest
that it is more suited for the bandpass filtering of MSLP fields. The detection and tracking parts also influence
the numbers of tracks although less critically. After a selection process that applies criteria to identify tracks of
potential polar lows, differences between both methods are still visible though the major systems are identified
in both
Analyzing the causes and spatial pattern of the European 2003 carbon flux anomaly in Europe using seven models
International audienceGlobally, the year 2003 is associated with one of the largest atmospheric CO2 rises on record. In the same year, Europe experienced an anomalously strong flux of CO2 from the land to the atmosphere associated with an exceptionally dry and hot summer in Western and Central Europe. In this study we analyze the magnitude of this carbon flux anomaly and key driving ecosystem processes using simulations of seven terrestrial ecosystem models of different complexity and types (process-oriented and diagnostic). We address the following questions: (1) how large were deviations in the net European carbon flux in 2003 relative to a short-term baseline (1998–2002) and to longer-term variations in annual fluxes (1980 to 2005), (2) which regions exhibited the largest shift in carbon fluxes during the growing season 2003, and (3) which processes controlled the carbon balance anomaly . In Western and Central Europe, the anomaly in net ecosystem productivity (NEP) over growing season 2003 was outside the 1s bound of the carbon flux anomalies for 1980–2005. The estimated growing season anomaly ranged between –29 and –196 Tg C for Western Europe and between 13 and –94 Tg C for Central Europe depending on the model used. All models responded to a dipole pattern of the climate anomaly in 2003. In Western and Central Europe NEP was reduced due to heat and drought. Over Western Russia NEP was decreased in response to lower than normal temperatures and high precipitation. While models agree on changes in simulated NEP and gross primary productivity anomalies in 2003 over Western and Central Europe, models diverge in the estimates of anomalies in ecosystem respiration. Except for two process models which simulate respiration increase, most models simulated a decrease in ecosystem respiration in 2003. The diagnostic models showed a weaker decrease in ecosystem respiration than the process-oriented models. Based on the multi-model simulations we estimated the total carbon flux anomaly over the 2003 growing season in Europe to range between –0.02 and –0.27 Pg C relative to the net flux in 1998–2002
Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos
We present the results of a Monte-Carlo study of the sensitivity of the
planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV
energies. A complete simulation of the detector and data analysis is used to
study the detector's capability to search for muon neutrinos from sources such
as active galaxies and gamma-ray bursts. We study the effective area and the
angular resolution of the detector as a function of muon energy and angle of
incidence. We present detailed calculations of the sensitivity of the detector
to both diffuse and pointlike neutrino emissions, including an assessment of
the sensitivity to neutrinos detected in coincidence with gamma-ray burst
observations. After three years of datataking, IceCube will have been able to
detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma
significance, or, in the absence of a signal, place a 90% c.l. limit at a level
E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a
minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst
model following the formulation of Waxman and Bahcall would result in a 5-sigma
effect after the observation of 200 bursts in coincidence with satellite
observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table
Limits to the muon flux from WIMP annihilation in the center of the Earth with the AMANDA detector
A search for nearly vertical up-going muon-neutrinos from neutralino
annihilations in the center of the Earth has been performed with the AMANDA-B10
neutrino detector. The data sample collected in 130.1 days of live-time in
1997, ~10^9 events, has been analyzed for this search. No excess over the
expected atmospheric neutrino background is oberved. An upper limit at 90%
confidence level on the annihilation rate of neutralinos in the center of the
Earth is obtained as a function of the neutralino mass in the range 100
GeV-5000 GeV, as well as the corresponding muon flux limit.Comment: 14 pages, 11 figures. Version accepted for publication in Physical
Review
Lysosome-mediated processing of chromatin in senescence
Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C–negative, but strongly γ-H2AX–positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression
Limits on diffuse fluxes of high energy extraterrestrial neutrinos with the AMANDA-B10 detector
Data from the AMANDA-B10 detector taken during the austral winter of 1997
have been searched for a diffuse flux of high energy extraterrestrial
muon-neutrinos, as predicted from, e.g., the sum of all active galaxies in the
universe. This search yielded no excess events above those expected from the
background atmospheric neutrinos, leading to upper limits on the
extraterrestrial neutrino flux. For an assumed E^-2 spectrum, a 90% classical
confidence level upper limit has been placed at a level E^2 Phi(E) = 8.4 x
10^-7 GeV cm^-2 s^-1 sr^-1 (for a predominant neutrino energy range 6-1000 TeV)
which is the most restrictive bound placed by any neutrino detector. When
specific predicted spectral forms are considered, it is found that some are
excluded.Comment: Submitted to Physical Review Letter
Search for Point Sources of High Energy Neutrinos with AMANDA
This paper describes the search for astronomical sources of high-energy
neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes,
used for the detection of Cherenkov light from upward traveling
neutrino-induced muons, buried deep in ice at the South Pole. The absolute
pointing accuracy and angular resolution were studied by using coincident
events between the AMANDA detector and two independent telescopes on the
surface, the GASP air Cherenkov telescope and the SPASE extensive air shower
array. Using data collected from April to October of 1997 (130.1 days of
livetime), a general survey of the northern hemisphere revealed no
statistically significant excess of events from any direction. The sensitivity
for a flux of muon neutrinos is based on the effective detection area for
through-going muons. Averaged over the Northern sky, the effective detection
area exceeds 10,000 m^2 for E_{mu} ~ 10 TeV. Neutrinos generated in the
atmosphere by cosmic ray interactions were used to verify the predicted
performance of the detector. For a source with a differential energy spectrum
proportional to E_{nu}^{-2} and declination larger than +40 degrees, we obtain
E^2(dN_{nu}/dE) <= 10^{-6}GeVcm^{-2}s^{-1} for an energy threshold of 10 GeV.Comment: 46 pages, 22 figures, 4 tables, submitted to Ap.
On the selection of AGN neutrino source candidates for a source stacking analysis with neutrino telescopes
The sensitivity of a search for sources of TeV neutrinos can be improved by
grouping potential sources together into generic classes in a procedure that is
known as source stacking. In this paper, we define catalogs of Active Galactic
Nuclei (AGN) and use them to perform a source stacking analysis. The grouping
of AGN into classes is done in two steps: first, AGN classes are defined, then,
sources to be stacked are selected assuming that a potential neutrino flux is
linearly correlated with the photon luminosity in a certain energy band (radio,
IR, optical, keV, GeV, TeV). Lacking any secure detailed knowledge on neutrino
production in AGN, this correlation is motivated by hadronic AGN models, as
briefly reviewed in this paper.
The source stacking search for neutrinos from generic AGN classes is
illustrated using the data collected by the AMANDA-II high energy neutrino
detector during the year 2000. No significant excess for any of the suggested
groups was found.Comment: 43 pages, 12 figures, accepted by Astroparticle Physic
- …
