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[1] Bias correcting climate models implicitly assumes
stationarity of the correction function. This assumption is
assessed for regional climate models in a pseudo reality for
seasonal mean temperature and precipitation sums. An
ensemble of regional climate models for Europe is used, all
driven with the same transient boundary conditions. Although
this model-dependent approach does not assess all possible
bias non-stationarities, conclusions can be drawn for the real
world. Generally, biases are relatively stable, and bias correction
on average improves climate scenarios. For winter temperature,
bias changes occur in the Alps and ice covered oceans caused
by a biased forcing sensitivity of surface albedo; for summer
temperature, bias changes occur due to a biased sensitivity of
cloud cover and soil moisture. Precipitation correction is
generally successful, but affected by internal variability in arid
climates. As model sensitivities vary considerably in some
regions, multi model ensembles are needed even after bias
correction. Citation: Maraun, D. (2012), Nonstationarities of
regional climate model biases in European seasonal mean tempera-
ture and precipitation sums, Geophys. Res. Lett., 39, L06706,
doi:10.1029/2012GL051210.

1. Introduction

[2] Regional climate models (RCMs) provide added value to
global climate simulations [Feser et al., 2011], but the actually
simulated fields of climate variables are often considerably
biased compared to gridded observational data [Christensen
et al., 2008]. End users of RCM simulations therefore often
apply bias correction methods. Most of these methods derive
a correction function that maps the empirical distribution of a
simulated present day climate time series to the corresponding
observed distribution. This function is then applied to correct
a future climate simulation (for a review, see Maraun et al.
[2010]). Approaches range from simple additive corrections
of the mean or variance [e.g., Déqué, 2007; Lenderink et al.,
2007], scaling of precipitation [Widmann and Bretherton,
2000] to more advanced quantile mapping methods [e.g.,
Piani et al., 2010; Li et al., 2010].
[3] A crucial assumption of bias correction is stationarity of

the bias, which is calculated for present climate, under future
climate change. This assumption is, however, questionable
[Christensen et al., 2008]. Just as model biases themselves are
caused by an imperfect model representation of the atmo-
spheric physics, also the local modelled response to external
forcing, i.e., the local climate sensitivity is biased in general.
Corresponding bias changes might be called sensitivity related

bias changes (SBC). In addition to such real bias changes, ap-
parent changes might occur. First, biases are estimated from
finite time series and afflicted with sampling uncertainty.
Corresponding bias changes merely caused by internal vari-
ability may be called variability related apparent bias changes
(VABC). Second, most bias correction methods are applied to
unconditional climatological distributions and disregard that
the derived overall bias may actually be a mixture of different
underlying biases depending on weather types. For instance,
biases for convective and stratiform precipitation might be
different. If the relative occurrence of such weather types
changes, also the overall bias might change. Such bias changes
might be called mixture related apparent bias changes
(MABC).
[4] It is difficult to assess non-stationarities of biases because

the period with a dense observational network shows a rela-
tively small climate change signal and is hardly long enough
for robust calibration and validation. Therefore, I use a pseudo
reality [Frías et al., 2006; Vrac et al., 2007; van der Linden
and Mitchell, 2009] to assess the extent and type of RCM
bias changes under future climate change. For the strongest
changes, I also analyse potential mechanisms causing the
identified changes. To isolate RCM biases I employ a perfect
boundary setting, biases from global climate models are
explicitly not considered. As an example I investigate the cor-
rection of winter and summer mean temperature and precipi-
tation sums over Europe.

2. Concept and Data

[5] As pseudo reality, I choose one global climate model /
RCM combination, where the global climate model represents
pseudo observed large scale boundary conditions for present
and future climate, the reference RCM itself represents regional
pseudo observations. An ensemble of other RCMs is treated as
models to be corrected. Using an ensemble and employing
each of the RCMs in turns as pseudo reality reduces the RCM
dependence of the results. The RCMs are forced with the same
pseudo observed boundary conditions as the reference RCM,
i.e., the same global climate model. For present day climate
simulations, this corresponds to a perfect boundary condition
setting, i.e., RCMs driven with reanalysis data. Under the
assumption that GCM and RCM biases do not interact, this
setting isolates RCM biases. Forcing with equal boundary
conditions also synchronises variability on scales beyond a
few days and allows for relatively short calibration periods.
I select the subset of RCMs from the ENSEMBLES project
[van der Linden and Mitchell, 2009] which are all driven
by the same boundary conditions of ECHAM5 run three for
the SRES A1B scenario and operate on the same grid:
HIRHAM5 (Danish Meteorological Institute), RACMO2
(Royal Dutch Meteorological Institute), REMO (Max Planck
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Institute for Meteorology) and RCA (Swedish Meteorological
and Hydrological Institute). The RCMs have a horizontal res-
olution of 25 km and cover the European domain of the
ENSEMBLES project. As calibration period, I choose
1970–1999, as future period 2070–2099.
[6] I consider seasonal mean temperature and precipitation

sums, separately for each season. Pseudo temperature obser-
vations of season i are denoted as To,i , model simulations as
Tm,i, precipitation observations as Po,i and model simulations
as Pm,i; temperature means over the calibration and scenario

period are denoted as �T cal
o and �T fut

o , precipitation sums as �Pcal
o

and �P fut
o , respectively. The temperature and precipitation

biases over the calibration period are defined as

BT cal ¼ �T cal
m � �T cal

o ;

BPcal ¼
�Pcal
m

�Pcal
o

:
ð1Þ

For precipitation relative changes are considered, i.e., a value of
1 indicates no bias. Biases for the future, BT fut and BP fut, are
defined accordingly. Model output corrected relative to the
calibration period is calculated as Tm,i

corr = Tm, i � BTcal and
Pcorr
m;i ¼ Pm;i

BPcal with corresponding temporal means and sums.
The change in temperature and precipitation bias from cali-
bration to future period is given as

DBT ¼ BT fut � BT cal;

DBP ¼ BPfut

BPcal
;

ð2Þ

The change in bias is equivalent to the future bias remaining
after a correction based on the calibration period. When the
uncorrected future bias is larger than the present day bias, bias
correction improves the results. Even when the uncorrected
future temperature bias is smaller than the calibration bias, the
absolute remaining bias might still be smaller than without
correction, although the remaining bias changes sign. Only
when the uncorrected future bias reduces to less than half the
calibration bias, bias correction deteriorates the original future
simulation. A similar argument holds in case of precipitation,
but positive (negative) values have to be replaced by values
larger (smaller) one. To highlight the actual reduction in bias, I
consider the improvement in absolute bias as the difference
(ratio for precipitation) between the absolute future bias without
correction and with correction:

IBT ¼ BT fut
�� ��� jDBT j;

IBP ¼ R BPfut
� �

R DBPð Þ : ð3Þ

Here R(x) is x for x > = 1 and 1/x for 0 < x < 1. The function
R(x) applied to ratios is the equivalent of taking absolute values
of differences. In the following, I will refer to both operations
as taking absolute values.

3. Results

[7] Of the four selected RCMs, all six permutations of one
model being the pseudo observation and the other three simu-
lations are considered. As pseudo observations and models are

interchangeable, only absolute biases and absolute changes in
biases are considered (the absolute values of definitions (1)
and (2)).
[8] Columns one and two of Figure 1 present the bias for the

calibration period (equation (1)) and the remaining bias in the
future (equation (2)), averaged over all permutations. In gen-
eral, the temperature bias (Figure 1, top two rows) as well as
the precipitation bias (Figure 1, bottom two rows) are on av-
erage strongly reduced by the bias correction. The change in
temperature bias is lowest over the open Atlantic and the
Mediterranean (Figures 1b and 1f), where temperature is con-
trolled by the prescribed SST boundary conditions, and
highest in the Barents Sea, White Sea and the Gulf of Bottnia
during winter (Figure 1b) and spring (not shown). Over
land, the change in winter temperature bias is strongest in
the Alps (Figure 1b). In general a stronger temperature bias
remains in summer, in particular in southwestern Europe
(Figure 1f). The change in precipitation bias is in general
low. It is highest during summer around the Mediterranean
(Figure 1n).
[9] The changes in bias are reflected in patterns of im-

provement due to the bias correction (equation (3)). Columns
three and four of Figure 1 show the mean (Figures 1c, 1g, 1k,
and 1o) and worst case improvement (Figures 1d, 1h, 1l,
and 1p) after a bias correction for the future based on the cal-
ibration period bias. The top two rows show winter and sum-
mer temperature, the bottom two rows the corresponding
results for precipitation. On average the temperature bias cor-
rection improves the future simulation despite changes in bias.
Yet over central Europe the improvement is negligible and for
some regions even deteriorates the simulation. The strongest
deterioration occurs for the Barents Sea, White Sea and the
Gulf of Bottnia during winter (Figure 1c) and spring (not
shown). The worst case panels show the lowest improvement
of all permutations for each grid box. For winter (Figure 1d),
biases in the Alps, the Barents Sea, White Sea and Gulf of
Bottnia, and for summer (Figure 1h), biases over central
Europe, Northern Italy and the Balkans stand out. Only over
some regions, temperature bias correction improves the simu-
lations even in the worst case. Precipitation bias correction on
average leads to an improvement over most regions (Figures 1k
and 1o). Even for the worst case the deterioration is weak, apart
from the Mediterranean and Northern Africa during summer
(Figure 1p).

4. Discussion

[10] To further investigate the causes leading to the de-
scribed bias changes, I consider future changes in potentially
relevant climatic variables. Figure 2 shows the standard devia-
tion of changes between 1970–1999 and 2070–2099 for winter
surface albedo (Figure 2a), summer cloud cover (Figure 2b),
summer soil moisture (Figure 2c) and summer sea level pres-
sure (Figure 2d). A strong model spread in winter albedo can
be observed in the Alps (Figure 2a), whereas the spread in
winter snow cover changes is negligible (not shown). This
finding indicates a spread in temperature response due to dif-
ferent changes in the perennial snow fraction. Furthermore a
strong model spread in winter albedo is apparent in the Gulf of
Bottnia, White Sea and Barents Sea (Figure 2a), which exceeds
changes in sea ice cover (not shown). In these regions, the
spread in temperature response might thus be explained by
different sea ice/albedo parameterisations. Changes in cloud
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cover exhibit the most apparent spread in summer, in particular
in central Europe (Figure 2b). The corresponding responses in
radiative surface heating may partly explain changes in tem-
perature biases. These might have been amplified in some
regions by soil moisture feedbacks (Figure 2c). Figure 2d
shows the spread in summer sea level pressure changes. The
pattern is likely a response to the spread in diabatic heating of
the atmosphere (Figure 1e). Yet the initial presence of such a
response pattern causes a meridional wind anomaly that might
also contribute to the bias change patterns. To conclude, the
described changes in temperature biases can be related to dif-
ferent responses of the climate system to the prescribed
greenhouse forcing and thus constitute SBC.
[11] Figure 3 shows regional mean changes in precipita-

tion biases for precipitation averaged to different space
scales. Results for central Europe (48N, 5E to 53N, 17E, the
regions are aligned parallel to the rotated grid) are depicted
in dark blue (circles), for the Iberian peninsula (36N, 9W to
44N, 0E) in light blue (triangles) and for the western
Maghreb (30N, 5W to 35N, 10E) in orange (crosses). Solid
lines indicate winter changes, dashed lines summer changes.
The fact that averaging precipitation, in particular for sum-
mer arid regions, strongly reduces the bias, indicates a key

role of VABC: where precipitation occurs as rather rare and
localised convective events, internal variability may dominate
the estimated seasonal biases on a local scale even when
averaging over 30 years.

5. Conclusions

[12] Non-stationarities in RCM biases of European seasonal
mean temperature and total precipitation, and their potential
causes have been assessed in a pseudo reality. To this end a
multi RCM ensemble has been employed, driven by the same
global climate model simulation to isolate RCM biases. Each
RCM has in turns been taken as pseudo reality, the others
as models to be corrected. I investigated the change in bias
between a present day calibration period and future simula-
tions, as well as the improvement of the future simulations by a
bias correction based on the calibration period.
[13] Biases between the models are in general relatively

stable, such that bias correction on average considerably im-
proves future scenarios for many regions and all seasons
(results for spring and autumn not shown). Biases, however,
remain and for some regions and seasons bias correction may
even deteriorate future simulations. Temperature bias correc-
tion on average improves future simulations, but some SBC

Figure 1. Biases and bias correction. (a–d) DJF temperature [K], (e–h) JJA temperature [K], (i–l) DJF precipitation [%],
and (m–p) JJA precipitation [%]. Shown are (left to right) 1970–1999 bias, mean across all permutations; change in bias
2070–2099 vs. 1970–1999; mean improvement across all permutations; and minimum improvement across all permutations.
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have been identified. During winter, for the Alps as well as the
Barents Sea, White Sea and Gulf of Bottnia large biases
remain; in these regions bias correction may even increase the
future bias. These changes are likely linked to changes in sur-
face albedo, with biased responses of perennial snow cover in
the Alps and sea ice albedo in the Northern seas (the latter is
also relevant in spring). During summer, in Southern France
and the Iberian Peninsula large biases remain, and in Central
Europe bias correction may even deteriorate future simulations.
These changes can be explained by biased responses of cloud
cover and soil moisture. Precipitation bias correction appears to
be successful for most of Europe, but is affected by VABC in
arid regions. Here, especially during the dry season (summer,
and in the Maghreb also spring) precipitation events are so rare
that bias estimates even of seasonal sums are dominated by
internal variability. For these regions it is advisable not to
derive precipitation biases on a grid box scale, but rather to
consider larger regions or smoothly varying bias models. As
biases have not been conditoned on weather types, this
study could not identify MABCs. The fact that the stron-
gest bias changes have been identified as SBC and VABC,
however, indicates that in practice MABCs play only a
minor role.
[14] Although the results have been obtained in a pseudo

reality, they also demonstrate the likely problems one might
face using bias correction in real world applications; where
different RCMs disagree, at least some of them will also differ
from reality. As an agreement among RCMs does not prove an
agreement with reality, a pseudo reality approach does not

unambiguously identify where bias correction will be suc-
cessful. Nevertheless, the results indicate potential problems as
well as regions less prone to non-stationary biases. As extreme
events are governed by different mechanisms than the mean
climate, also biases for high quantiles tend to be different from
biases in the mean [Christensen et al., 2008]. Therefore, this
analysis should be carried out separately for extreme events.
The fact that the minimum improvement shows strong non-
stationarities in biases between at least some models highlights
that even after bias correction multi model ensembles are still
required to assess the range of uncertainties in local climate
sensitivities.

Figure 3. Precipitation bias change as function of spatial
scale, average across all model permutations. Orange crosses:
northern Africa, light blue triangles: Iberian Peninsula, dark
blue circles: central Europe. Solid lines: DJF, dashed lines: JJA.

Figure 2. Standard deviation of changes in different variables, 2070–2099 vs. 1970–1999, across all permutations. (a) DJF
surface albedo, (b) JJA fractional cloud cover, (c) JJA soil moisture (relative to the 1970–1999 mean), and (d) JJA sea level
pressure [hPa].
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