403 research outputs found
Mrk 421, Mrk 501, and 1ES 1426+428 at 100 GeV with the CELESTE Cherenkov Telescope
We have measured the gamma-ray fluxes of the blazars Mrk 421 and Mrk 501 in
the energy range between 50 and 350 GeV (1.2 to 8.3 x 10^25 Hz). The detector,
called CELESTE, used first 40, then 53 heliostats of the former solar facility
"Themis" in the French Pyrenees to collect Cherenkov light generated in
atmospheric particle cascades. The signal from Mrk 421 is often strong. We
compare its flux with previously published multi-wavelength studies and infer
that we are straddling the high energy peak of the spectral energy
distribution. The signal from Mrk 501 in 2000 was weak (3.4 sigma). We obtain
an upper limit on the flux from 1ES 1426+428 of less than half that of the Crab
flux near 100 GeV. The data analysis and understanding of systematic biases
have improved compared to previous work, increasing the detector's sensitivity.Comment: 15 pages, 14 figures, accepted to A&A (July 2006) August 19 --
corrected error in author lis
Observation of the Crab Nebula Gamma-Ray Emission Above 220 Gev by the Cat Cherenkov Imaging Telescope
The CAT imaging telescope, recently built on the site of the former solar
plant Themis (French Pyrenees), observed gamma-rays from the Crab nebula from
October 1996 to March 1997. This steady source, often considered as the
standard candle of very-high-energy gamma-ray astronomy, is used as a test-beam
to probe the performances of the new telescope, particularly its energy
threshold (220 GeV at 20 degrees zenith angle) and the stability of its
response. Due to the fine-grain camera, an accurate analysis of the
longitudinal profiles of shower images is performed, yielding the source
position in two dimensions for each individual shower.Comment: 5 pages, 3 figures, Tex, contribution to 25th ICRC Durba
The CAT Imaging Telescope for Very-High-Energy Gamma-Ray Astronomy
The CAT (Cherenkov Array at Themis) imaging telescope, equipped with a
very-high-definition camera (546 fast phototubes with 0.12 degrees spacing
surrounded by 54 larger tubes in two guard rings) started operation in Autumn
1996 on the site of the former solar plant Themis (France). Using the
atmospheric Cherenkov technique, it detects and identifies very high energy
gamma-rays in the range 250 GeV to a few tens of TeV. The instrument, which has
detected three sources (Crab nebula, Mrk 421 and Mrk 501), is described in
detail.Comment: 24 pages, 15 figures. submitted to Elsevier Preprin
Spectrum and Variability of Mrk501 as observed by the CAT Imaging Telescope
The CAT Imaging Telescope has observed the BL Lac object Markarian 501
between March and August 1997. We report here on the variability over this time
including several large flares. We present also preliminary spectra for all
these data, for the low emission state, and for the largest flare.Comment: 4 pages, 4 figures, Late
Fermi-LAT Study of Gamma-ray Emission in the Direction of Supernova Remnant W49B
We present an analysis of the gamma-ray data obtained with the Large Area
Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the direction of
SNR W49B (G43.3-0.2). A bright unresolved gamma-ray source detected at a
significance of 38 sigma is found to coincide with SNR W49B. The energy
spectrum in the 0.2-200 GeV range gradually steepens toward high energies. The
luminosity is estimated to be 1.5x10^{36} (D/8 kpc)^2 erg s^-1 in this energy
range. There is no indication that the gamma-ray emission comes from a pulsar.
Assuming that the SNR shell is the site of gamma-ray production, the observed
spectrum can be explained either by the decay of neutral pi mesons produced
through the proton-proton collisions or by electron bremsstrahlung. The
calculated energy density of relativistic particles responsible for the LAT
flux is estimated to be remarkably large, U_{e,p}>10^4 eV cm^-3, for either
gamma-ray production mechanism.Comment: 9 pages, 10 figure
Detection of 16 Gamma-Ray Pulsars Through Blind Frequency Searches Using the Fermi LAT
Pulsars are rapidly-rotating, highly-magnetized neutron stars emitting
radiation across the electromagnetic spectrum. Although there are more than
1800 known radio pulsars, until recently, only seven were observed to pulse in
gamma rays and these were all discovered at other wavelengths. The Fermi Large
Area Telescope makes it possible to pinpoint neutron stars through their
gamma-ray pulsations. We report the detection of 16 gamma-ray pulsars in blind
frequency searches using the LAT. Most of these pulsars are coincident with
previously unidentified gamma-ray sources, and many are associated with
supernova remnants. Direct detection of gamma-ray pulsars enables studies of
emission mechanisms, population statistics and the energetics of pulsar wind
nebulae and supernova remnants.Comment: Corresponding authors: Michael Dormody, Paul S. Ray, Pablo M. Saz
Parkinson, Marcus Ziegle
Detection of Vhe Gamma-Rays from MRK 501 with the Cat Imaging Telescope
The CAT imaging telescope on the site on the former solar plant Themis has
been observing gamma-rays from Mrk501 above 220 GeV in March and April 1997.
This source is shown to be highly variable and the light curve is presented.
The detected gamma-ray rate for the most intense flare is in excess of 10 per
minute.Comment: 5 pages, 4 figures, Tex, contribution to 25th ICRC Durba
Detection of the Small Magellanic Cloud in gamma-rays with Fermi/LAT
The flux of gamma rays with energies >100MeV is dominated by diffuse emission
from CRs illuminating the ISM of our Galaxy through the processes of
Bremsstrahlung, pion production and decay, and inverse-Compton scattering. The
study of this diffuse emission provides insight into the origin and transport
of CRs. We searched for gamma-ray emission from the SMC in order to derive
constraints on the CR population and transport in an external system with
properties different from the Milky Way. We analysed the first 17 months of
continuous all-sky observations by the Large Area Telescope of the Fermi
mission to determine the spatial distribution, flux and spectrum of the
gamma-ray emission from the SMC. We also used past radio synchrotron
observations of the SMC to study the population of CR electrons specifically.
We obtained the first detection of the SMC in high-energy gamma rays, with an
integrated >100MeV flux of (3.7 +/-0.7) x10e-8 ph/cm2/s, with additional
systematic uncertainty of <16%. The emission is steady and from an extended
source ~3{\deg} in size. It is not clearly correlated with the distribution of
massive stars or neutral gas, nor with known pulsars or SNRs, but a certain
correlation with supergiant shells is observed. The observed flux implies an
upper limit on the average CR nuclei density in the SMC of ~15% of the value
measured locally in the Milky Way. The population of high-energy pulsars of the
SMC may account for a substantial fraction of the gamma-ray flux, which would
make the inferred CR nuclei density even lower. The average density of CR
electrons derived from radio synchrotron observations is consistent with the
same reduction factor but the uncertainties are large. From our current
knowledge of the SMC, such a low CR density does not seem to be due to a lower
rate of CR injection and rather indicates a smaller CR confinement volume
characteristic size.Comment: 14 pages, 6 figures, accepted for publication in A&
Fermi Observations of the Very Hard Gamma-ray Blazar PG 1553+113
We report the observations of PG 1553+113 during the first ~200 days of Fermi
Gamma-ray Space Telescope science operations, from 4 August 2008 to 22 February
2009 (MJD 54682.7-54884.2). This is the first detailed study of PG 1553+113 in
the GeV gamma-ray regime and it allows us to fill a gap of three decades in
energy in its spectral energy distribution. We find PG 1553+113 to be a steady
source with a hard spectrum that is best fit by a simple power-law in the Fermi
energy band. We combine the Fermi data with archival radio, optical, X-ray and
very high energy (VHE) gamma-ray data to model its broadband spectral energy
distribution and find that a simple, one-zone synchrotron self-Compton model
provides a reasonable fit. PG 1553+113 has the softest VHE spectrum of all
sources detected in that regime and, out of those with significant detections
across the Fermi energy bandpass so far, the hardest spectrum in that energy
regime. Thus, it has the largest spectral break of any gamma-ray source studied
to date, which could be due to the absorption of the intrinsic gamma-ray
spectrum by the extragalactic background light (EBL). Assuming this to be the
case, we selected a model with a low level of EBL and used it to absorb the
power-law spectrum from PG 1553+113 measured with Fermi (200 MeV - 157 GeV) to
find the redshift which gave the best fit to the measured VHE data (90 GeV -
1.1 TeV) for this parameterisation of the EBL. We show that this redshift can
be considered an upper limit on the distance to PG 1553+113.Comment: Accepted for publication in the Astrophysical Journal (28 pages, 5
figures
Fermi LAT observations of the Geminga pulsar
We report on the \textit{Fermi}-LAT observations of the Geminga pulsar, the
second brightest non-variable GeV source in the -ray sky and the first
example of a radio-quiet -ray pulsar. The observations cover one year,
from the launch of the satellite through 2009 June 15. A data sample of
over 60,000 photons enabled us to build a timing solution based solely on
rays. Timing analysis shows two prominent peaks, separated by = 0.497 0.004 in phase, which narrow with increasing energy. Pulsed
rays are observed beyond 18 GeV, precluding emission below 2.7 stellar
radii because of magnetic absorption. The phase-averaged spectrum was fitted
with a power law with exponential cut-off of spectral index = (1.30
0.01 0.04), cut-off energy = (2.46 0.04 0.17)
GeV and an integral photon flux above 0.1 GeV of (4.14 0.02 0.32)
10 cm s. The first uncertainties are statistical
and the second are systematic. The phase-resolved spectroscopy shows a clear
evolution of the spectral parameters, with the spectral index reaching a
minimum value just before the leading peak and the cut-off energy having maxima
around the peaks. Phase-resolved spectroscopy reveals that pulsar emission is
present at all rotational phases. The spectral shape, broad pulse profile, and
maximum photon energy favor the outer magnetospheric emission scenarios.Comment: 32 pages, 12 figures, 3 tables. Accepted for publication in The
Astrophysical Journal. Corresponding authors: Denis Dumora
([email protected]), Fabio Gargano ([email protected]),
Massimiliano Razzano ([email protected]
- …
