83 research outputs found

    Alternative low-cost adsorbent for water and wastewater decontamination derived from eggshellwaste: an overview

    Get PDF
    As the current global trend towards more stringent environmental standards, technical applicability and cost-effectiveness became key factors in the selection of adsorbents for water and wastewater treatment. Recently, various low-cost adsorbents derived from agricultural waste, industrial by-products or natural materials, have been intensively investigated. In this respect, the eggshells from egg-breaking operations constitute significant waste disposal problems for the food industry, so the development of value-added by-products from this waste is to be welcomed. The egg processing industry is very competitive, with low profit margins due to global competition and cheap imports. Additionally, the costs associated with the egg shell disposal (mainly on landfill sites) are significant, and expected to continue increasing as landfill taxes increase. The aim of the present review is to provide an overview on the development of low-cost adsorbents derived from eggshell by-products

    Properties of nanocones formed on a surface of semiconductors by laser radiation: quantum confinement effect of electrons, phonons, and excitons

    Get PDF
    On the basis of the analysis of experimental results, a two-stage mechanism of nanocones formation on the irradiated surface of semiconductors by Nd:YAG laser is proposed for elementary semiconductors and solid solutions, such as Si, Ge, SiGe, and CdZnTe. Properties observed are explained in the frame of quantum confinement effect. The first stage of the mechanism is characterized by the formation of a thin strained top layer, due to redistribution of point defects in temperature-gradient field induced by laser radiation. The second stage is characterized by mechanical plastic deformation of the stained top layer leading to arising of nanocones, due to selective laser absorption of the top layer. The nanocones formed on the irradiated surface of semiconductors by Nd:YAG laser possessing the properties of 1D graded bandgap have been found for Si, Ge, and SiGe as well, however QD structure in CdTe was observed. The model is confirmed by "blue shift" of bands in photoluminescence spectrum, "red shift" of longitudinal optical line in Raman back scattering spectrum of Ge crystal, appearance of Ge phase in SiGe solid solution after irradiation by the laser at intensity 20 MW/cm2, and non-monotonous dependence of Si crystal micro-hardness as function of the laser intensity

    Control of Spatial Organization of Gold Nanoparticles Using Cylindrical Nanopores of Block Copolymers Films

    Get PDF
    Abstract In this paper, a sequential process of elaboration of hybrid nanostructured composite films has been proposed. The combination of phase separation in poly(styrene-block-4vinylpyridine) (PS-P4VP) block copolymer leading to the formation of nanopores, and gold nanocolloids synthesis confined in the nanoholes has allowed the facile fabrication of hexagonally arranged gold nanoparticles (NPs) onto silicon wafer. In particular, the nucleation and growth of gold nanoparticles took place within the nanopores, where they are confined in both size and shape the formed Au NPs. The resulting hybrid nanoscomposite has been characterized by Atomic Force Microscopy (AFM) and X-Ray Spectroscopy (XPS). This facile and simple process represents an opened pathway to several technologically important materials fabrication such as hierarchical and ordered crystal architectures. Indeed, the approach based on solvent phase, which is particularly attractive due to its low energy requirement, and the safety and environmentally gentle processing conditions

    Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: A review

    Get PDF
    Sludge or waste activated sludge (WAS) generated from wastewater treatment plants may be considered a nuisance. It is a key source for secondary environmental contamination on account of the presence of diverse pollutants (polycyclic aromatic hydrocarbons, dioxins, furans, heavy metals, etc.). Innovative and cost-effective sludge treatment pathways are a prerequisite for the safe and environment-friendly disposal of WAS. This article delivers an assessment of the leading disposal (volume reduction) and energy recovery routes such as anaerobic digestion, incineration, pyrolysis, gasification and enhanced digestion using microbial fuel cell along with their comparative evaluation, to measure their suitability for different sludge compositions and resources availability. Furthermore, the authors shed light on the bio-refinery and resource recovery approaches to extract value added products and nutrients from WAS, and control options for metal elements and micro-pollutants in sewage sludge. Recovery of enzymes, bio-plastics, bio-pesticides, proteins and phosphorus are discussed as a means to visualize sludge as a potential opportunity instead of a nuisance

    Synthesis of polycationic bentonite-ionene complexes and their benzene adsorption capacity

    Full text link
    The purpose of this work was to structurally modify clays in order to incorporate water-insoluble molecules, such as petroleum hydrocarbons. The potential for ion exchange of quaternary ammonium salts was studied, which revealed their ability to interact with anions on the cationic surface, for environmental applications of the material. Ionenes, also known as polycations, have many potential uses in environmental applications. In this work, cationic aliphatic ammonium polyionenes, specifically 3,6-ionene and 3,6-dodecylionene, were prepared for incorporation into clay to form bentonite-ionene complexes. The intercalation of bentonite with ionene polymers resulted in an increase in the basal spacing of 3,6-dodecylionene from 1.5-3.5 nm. The higher d001 spacing of 3,6-dodecylionene samples than that of 3,6-ionene samples may be attributed to their longer tail length. The behavior of the TG/DTG curves and the activation energy values suggest that 3,6-dodecylionene (E = 174.85 kJ mol(-1)) is thermally more stable than 3,6 ionene (E = 115.52 kJ mol(-1)) complexes. The adsorption of benzene by 3,6-ionene and 3,6-dodecylionene was also investigated. The increase in benzene concentrations resulted in increased benzene adsorption by the sorbents tested in this work. The sorption capacity of benzene on ionene-modified bentonite was in the order of 3,6-dodecylionene > 3,6-ionene.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, UNESP, Sorocaba, SP, BrazilCtr Univ FIEO UNIFIEO, Osasco, SP, BrazilUniv Estadual Paulista, UNESP, Sorocaba, SP, BrazilFAPESP: 2010/01287-

    Influence of molecular hydrogen on Ge island nucleation on Si(001)

    Get PDF
    The influence of molecular hydrogen (H-2) on the structural and optical properties of self-assembled Ge dots grown on Si(001) has been studied using atomic force microscopy and photoluminescence spectroscopy (PL). Without hydrogen, a well known bimodal island size distribution occurs with small {105} faceted pyramids, and larger multifaceted domes. In the presence of an additional H-2 flow, we observe that a higher density of smaller pyramids and a lower density of domes occurs. Moreover, in the presence of hydrogen, PL investigations have revealed a thicker wetting layer thickness, probably due to a reduction of the surface diffusion length. (C) 2000 American Institute of Physics. [S0021-8979(00)07822-1]

    Structural and optical properties of Ge islands grown in an industrial chemical vapor deposition reactor

    Get PDF
    The use of Si based materials for optoelectronic applications is hampered by the indirect nature of the band gap. One possible solution by which to improve the radiative light emission is three-dimensional Stranski-Krastanow growth of Si1-xGex or pure Ge on top of Si. In this article we give a detailed overview about the growth kinetics observed for Ge growth in a standard production oriented chemical vapor deposition system. With increasing deposition time, we observed the usual changeover from monomodal to bimodal island distribution. The island morphology and density can be controlled by varying the growth conditions or by applying a thermal anneal after island growth. Island densities up to 2.3x10(10) cm(-2) have been obtained for depositions at 650 degreesC. A Si cap layer is needed for photoluminescence measurements as well as for some device structures. However, Si capping at 700 degreesC leads to nearly total dissolution of small islands and truncation of bigger dome-shaped islands. This can be prevented by reducing the deposition temperature and by changing the Si gas source. Photoluminescence measurements demonstrate the high layer quality of Si capped islands by the clear separation between the no-phonon line and the transversal optical (TO) replica and the high peak intensities. The spectral range of the island luminescence is between 1.35 (920 meV) and 1.50 mum (828 meV) and depends on the growth conditions. At 20 K, we found up to 70 times higher values for the integrated no-phonon and the TO luminescence from the islands, compared to the integrated intensity from the Si TO peak. Nevertheless, the high photoluminescence intensity can be further enhanced by a thermal treatment in a H-2 plasma. Clear island luminescence up to 200 K has been observed after such thermal treatment, which shows the potential of this material system for optoelectronic device applications. (C) 2001 American Institute of Physics

    Physical characteristics of a waste activated sludge: conditioning responses and correlations with a synthetic surrogate

    Full text link
    The efficient and economic management of waste activated sludge (WAS) requires a proper understanding of the sludge's material properties. Though there has been much study of WAS, an adequate linkage between its physical and chemical properties has been elusive. In particular, the conditioning and dewatering of WAS are expensive operations, and the addition of polymer to WAS leads to even more complex material behavior that is difficult to optimize. This paper reports on an extensive characterization of WAS, both with and without polymer conditioning. We combined the classical “jar test” approach with less conventional rheometric and electrokinetic measurements. In addition to the use of sampled WAS, a synthetic surrogate sludge was formulated, attempting to duplicate properties of WAS and allow more extensive characterization of a reproducible surrogate to WAS. Results with both the synthetic surrogate and WAS indicated that the traditional, electrokinetic, and rheological properties were related. However, the dose optima by rheometry were somewhat higher in both cases.</jats:p
    corecore