136 research outputs found
Dissolved noble gases and stable isotopes as tracers of preferential fluid flow along faults in the Lower Rhine Embayment, Germany
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7 × 10−4 cm3 (STP) g–1 ± 2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ∼107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids
Improving the hyperpolarization of (31)p nuclei by synthetic design
Traditional (31)P NMR or MRI measurements suffer from low sensitivity relative to (1)H detection and consequently require longer scan times. We show here that hyperpolarization of (31)P nuclei through reversible interactions with parahydrogen can deliver substantial signal enhancements in a range of regioisomeric phosphonate esters containing a heteroaromatic motif which were synthesized in order to identify the optimum molecular scaffold for polarization transfer. A 3588-fold (31)P signal enhancement (2.34% polarization) was returned for a partially deuterated pyridyl substituted phosphonate ester. This hyperpolarization level is sufficient to allow single scan (31)P MR images of a phantom to be recorded at a 9.4 T observation field in seconds that have signal-to-noise ratios of up to 94.4 when the analyte concentration is 10 mM. In contrast, a 12 h 2048 scan measurement under standard conditions yields a signal-to-noise ratio of just 11.4. (31)P-hyperpolarized images are also reported from a 7 T preclinical scanner
Trait-based approaches to zooplankton communities
Zooplankton are major primary consumers and predators in most aquatic ecosystems. They exhibit tremendous diversity of traits, ecological strategies and, consequently, impacts on other trophic levels and the cycling of materials and energy. An adequate representation of this diversity in community and ecosystem models is necessary to generate realistic predictions on the functioning of aquatic ecosystems but remains extremely challenging. We propose that the use of trait-based approaches is a promising way to reduce complexity while retaining realism in developing novel descriptions of zooplankton in ecosystem models. Characterizing zooplankton traits and trade-offs will also be helpful in understanding the selection pressures and diversity patterns that emerge in different ecosystems along major environmental gradients. Zooplankton traits can be characterized according to their function and type. Some traits, such as body size and motility, transcend several functions and are major determinants of zooplankton ecological strategies. Future developments of trait-based approaches to zooplankton should assemble a comprehensive matrix of key traits for diverse groups and explore it for general patterns; develop novel predictive models that explicitly incorporate traits and associated trade-offs; and utilize these traits to explain and predict zooplankton community structure and dynamics under different environmental conditions, including global change scenarios. © 2013 The Author
Consumer–brand identification revisited: An integrative framework of brand identification, customer satisfaction, and price image and their role for brand loyalty and word of mouth
Consumer–brand identification has received considerable attraction among scholars and practitioners in recent years. We contribute to previous research by proposing an integrative model that includes consumer–brand identification, customer satisfaction, and price image to investigate the interrelationships among these constructs as well as their effects on brand loyalty and positive word of mouth. To provide general results, we empirically test the model using a sample of 1443 respondents from a representative consumer panel and 10 service/product brands. The results demonstrate that identification, satisfaction, and price image significantly influence both loyalty and word of mouth. Moreover, we find significant interrelationships among the constructs: Identification positively influences both satisfaction and price image, which also increases satisfaction. By disclosing the relative importance of three separate ways of gaining and retaining customers, this study helps managers more appropriately choose the right mix of branding, pricing, and relationship marketing. From an academic point of view, our research is the first to explicitly examine the effects of the concept of identification for price management and to integrate variables from the fields of branding, relationship marketing, and behavioral pricing, which have separately been identified as particularly important determinants of marketing outcomes
The Passive Yet Successful Way of Planktonic Life: Genomic and Experimental Analysis of the Ecology of a Free-Living Polynucleobacter Population
Background: The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise,1 % to 70 % (on average about 20%) of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond. Findings: The investigated population (F10 lineage) contributed on average 11 % to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November). Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb), a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances. Conclusions: Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigate
the hidden biodiversity data retained in pre linnaean works a case study with two important xvii century italian entomologists
Before Linnaeus published the Systema Naturae, in which introduced the modern species concept, a huge amount of information on ecology, behaviour and diversity of many animals had been accumulated. This information, often extremely detailed, suffers from the lack of the assignation of the studied organisms to their modern specific names. Here, we examine in detail the works of Antonio Vallisneri (1661–1730), one of the most important figures of early experimental entomology in Italy. We analyse the ecological and ethological contributions of Vallisneri, as well as those that Diacinto Cestoni (1637–1718), another Italian naturalist, sent to Vallisneri, to the knowledge of parasitoid, predatory and gall-making wasps (Hymenoptera), by studying the Saggio de' Dialoghi sopra la curiosa origine di molti Insetti and the Quaderni di Osservazioni I-III, trying to assign current taxonomy to the observed insects based on eco-ethological and morphological descriptions. Valuable data have been found in the analysed works on taxonomically diverse ecological webs involving wasps. Information regarded a variety of hymenopteran parasitoids of other Hymenoptera, dipteran parasitoids of Hymenoptera, coleopteran parasitoids of Hymenoptera, and hymenopteran parasitoids associated with non-hymenopteran hosts. Overall, about 20 wasp genera could have been objects of Vallisneri and Cestoni observations, which include the first detailed ecological and ethological data on many of them. Detailed re-examinations of ancient studies may contribute to our knowledge on biodiversity by providing historical distribution data as well as unveiling trophic interactions that may have been modified due to biodiversity loss in the last century
ChemInform Abstract: Fluorides and Fluoro Acids. Part 18. The System Pyridine-Hydrogen Fluoride at Low Temperatures: Formation and Crystal Structures of Solid Complexes with Very Strong NHF and FHF Hydrogen Bonding.
Grazing rates and functional diversity of uncultured heterotrophic flagellates
9 pages, 4 figuresAquatic assemblages of heterotrophic protists are very diverse and formed primarily by organisms that remain uncultured. Thus, a critical issue is assigning a functional role to this unknown biota. Here we measured grazing rates of uncultured protists in natural assemblages (detected by fluorescent in situ hybridization (FISH)), and investigated their prey preference over several bacterial tracers in short-term ingestion experiments. These included fluorescently labeled bacteria (FLB) and two strains of the Roseobacter lineage and the family Flavobacteriaceae, of various cell sizes, which were offered alive and detected by catalyzed reporter deposition-FISH after the ingestion. We obtained grazing rates of the globally distributed and uncultured marine stramenopiles groups 4 and 1 (MAST-4 and MAST-1C) flagellates. Using FLB, the grazing rate of MAST-4 was somewhat lower than whole community rates, consistent with its small size. MAST-4 preferred live bacteria, and clearance rates with these tracers were up to 2 nl per predator per h. On the other hand, grazing rates of MAST-1C differed strongly depending on the tracer prey used, and these differences could not be explained by cell viability. Highest rates were obtained using FLB whereas the flavobacteria strain was hardly ingested. Possible explanations would be that the small flavobacteria cells were outside the effective size range of edible prey, or that MAST-1C selects against this particular strain. Our original dual FISH protocol applied to grazing experiments reveals important functional differences between distinct uncultured protists and offers the possibility to disentangle the complexity of microbial food websThis study was supported by the project ESTRAMAR (CTM2004-12631/MAR, MEC) to RM. FN was supported by the Marie-Curie fellowship ESUMAST (MEIF CT-2005-025000) and TL by the project METAOCEANS (MEST-CT-2005-019678)Peer reviewe
- …
