308 research outputs found

    5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, is responsible for complete Freund's adjuvant-induced thermal hyperalgesia in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of serotonin (5-hydroxytrptamine, 5-HT) in the modulation of pain has been widely studied. Previous work led to the hypothesis that 5-hydroxyindolacetic acid (5-HIAA), a main metabolite of serotonin, might by itself influence pain thresholds.</p> <p>Results</p> <p>In the present study, we investigated the role of 5-HIAA in inflammatory pain induced by intraplantar injection of complete Freund's adjuvant (CFA) into the hind paw of mice. Wild-type mice were compared to mice deficient of the 5-HT transporter (5-HTT-/- mice) using behavioral tests for hyperalgesia and high-performance liquid chromatography (HPLC) to determine tissue levels of 5-HIAA. Wild-type mice reproducibly developed thermal hyperalgesia and paw edema for 5 days after CFA injection. 5-HTT-/- mice treated with CFA had reduced thermal hyperalgesia on day 1 after CFA injection and normal responses to heat thereafter. The 5-HIAA levels in spinal cord and sciatic nerve as measured with HPLC were lower in 5-HTT-/- mice than in wild-type mice after CFA injection. Pretreatment of wild-type mice with intraperitoneal injection of para-chlorophenylalanine (p-CPA), a serotonin synthesis inhibitor, resulted in depletion of the 5-HIAA content in spinal cord and sciatic nerve and decrease in thermal hyperalgesia in CFA injected mice. The application of exogenous 5-HIAA resulted in potentiation of thermal hyperalgesia induced by CFA in 5-HTT-/- mice and in wild-type mice pretreated with p-CPA, but not in wild-type mice without p-CPA pretreatment. Further, methysergide, a broad-spectrum serotonin receptor antagonist, had no effect on 5-HIAA-induced potentiation of thermal hyperalgesia in CFA-treated wild-type mice.</p> <p>Conclusion</p> <p>Taken together, the present results suggest that 5-HIAA plays an important role in modulating peripheral thermal hyperalgesia in CFA induced inflammation, probably via a non-serotonin receptor mechanism.</p

    The role of myocardial innervation imaging in different clinical scenarios: an expert document of the European Association of Cardiovascular Imaging and Cardiovascular Committee of the European Association of Nuclear Medicine

    Get PDF
    Cardiac sympathetic activity plays a key role in supporting cardiac function in both health and disease conditions, and nuclear cardiac imaging has always represented the only way for the non-invasive evaluation of the functional integrity of cardiac sympathetic terminals, mainly through the use of radiopharmaceuticals that are analogues of norepinephrine and, in particular, with the use of I-123-mIBG imaging. This technique demonstrates the presence of cardiac sympathetic dysfunction in different cardiac pathologies, linking the severity of sympathetic nervous system impairment to adverse patient's prognosis. This article will outline the state-of-the-art of cardiac I-123-mIBG imaging and define the value and clinical applications in the different fields of cardiovascular diseases.Cardiolog

    Gene expression in lungs of mice lacking the 5-hydroxytryptamine transporter gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While modulation of the serotonin transporter (5HTT) has shown to be a risk factor for pulmonary arterial hypertension for almost 40 years, there is a lack of in vivo data about the broad molecular effects of pulmonary inhibition of 5HTT. Previous studies have suggested effects on inflammation, proliferation, and vasoconstriction. The goal of this study was to determine which of these were supported by alterations in gene expression in serotonin transporter knockout mice.</p> <p>Methods</p> <p>Eight week old normoxic mice with a 5-HTT knock-out (5HTT-/-) and their heterozygote(5HTT+/-) or wild-type(5HTT+/+) littermates had right ventricular systolic pressure(RVSP) assessed, lungs collected for RNA, pooled, and used in duplicate in Affymetrix array analysis. Representative genes were confirmed by quantitative RT-PCR and western blot.</p> <p>Results</p> <p>RVSP was normal in all groups. Only 124 genes were reliably changed between 5HTT-/- and 5HTT+/+ mice. More than half of these were either involved in inflammatory response or muscle function and organization; in addition, some matrix, heme oxygenase, developmental, and energy metabolism genes showed altered expression. Quantitative RT-PCR for examples from each major group confirmed changes seen by array, with an intermediate level in 5HTT +/- mice.</p> <p>Conclusion</p> <p>These results for the first time show the in vivo effects of 5HTT knockout in lungs, and show that many of the downstream mechanisms suggested by cell culture and ex vivo experiments are also operational in vivo. This suggests that the effect of 5HTT on pulmonary vascular function arises from its impact on several systems, including vasoreactivity, proliferation, and immune function.</p

    Brain activation during cognitive planning in twins discordant or concordant for obsessive–compulsive symptoms

    Get PDF
    Neuroimaging studies have indicated abnormalities in cortico-striatal-thalamo-cortical circuits in patients with obsessive–compulsive disorder compared with controls. However, there are inconsistencies between studies regarding the exact set of brain structures involved and the direction of anatomical and functional changes. These inconsistencies may reflect the differential impact of environmental and genetic risk factors for obsessive–compulsive disorder on different parts of the brain. To distinguish between functional brain changes underlying environmentally and genetically mediated obsessive–compulsive disorder, we compared task performance and brain activation during a Tower of London planning paradigm in monozygotic twins discordant (n = 38) or concordant (n = 100) for obsessive–compulsive symptoms. Twins who score high on obsessive–compulsive symptoms can be considered at high risk for obsessive–compulsive disorder. We found that subjects at high risk for obsessive–compulsive disorder did not differ from the low-risk subjects behaviourally, but we obtained evidence that the high-risk subjects differed from the low-risk subjects in the patterns of brain activation accompanying task execution. These regions can be separated into those that were affected by mainly environmental risk (dorsolateral prefrontal cortex and lingual cortex), genetic risk (frontopolar cortex, inferior frontal cortex, globus pallidus and caudate nucleus) and regions affected by both environmental and genetic risk factors (cingulate cortex, premotor cortex and parts of the parietal cortex). Our results suggest that neurobiological changes related to obsessive–compulsive symptoms induced by environmental factors involve primarily the dorsolateral prefrontal cortex, whereas neurobiological changes induced by genetic factors involve orbitofrontal–basal ganglia structures. Regions showing similar changes in high-risk twins from discordant and concordant pairs may be part of compensatory networks that keep planning performance intact, in spite of cortico-striatal-thalamo-cortical deficits

    Reduced Serotonin Reuptake Transporter (SERT) Function Causes Insulin Resistance and Hepatic Steatosis Independent of Food Intake

    Get PDF
    Serotonin reuptake transporter (SERT) is a key regulator of serotonin neurotransmission and a major target of antidepressants. Antidepressants, such as selectively serotonin reuptake inhibitors (SSRIs), that block SERT function are known to affect food intake and body weight. Here, we provide genetic evidence that food intake and metabolism are regulated by separable mechanisms of SERT function. SERT-deficient mice ate less during both normal diet and high fat diet feeding. The reduced food intake was accompanied with markedly elevated plasma leptin levels. Despite reduced food intake, SERT-deficient mice exhibited glucose intolerance and insulin resistance, and progressively developed obesity and hepatic steatosis. Several lines of evidence indicate that the metabolic deficits of SERT-deficient mice are attributable to reduced insulin-sensitivity in peripheral tissues. First, SERT-deficient mice exhibited beta-cell hyperplasia and islet-mass expansion. Second, biochemical analyses revealed constitutively elevated JNK activity and diminished insulin-induced AKT activation in the liver of SERT-deficient mice. SERT-deficient mice exhibited hyper-JNK activity and hyperinsulinemia prior to the development of obesity. Third, enhancing AKT signaling by PTEN deficiency corrected glucose tolerance in SERT-deficient mice. These findings have potential implications for designing selective SERT drugs for weight control and the treatment of metabolic syndromes

    Acute and constitutive increases in central serotonin levels reduce social play behaviour in peri-adolescent rats

    Get PDF
    Item does not contain fulltextRATIONALE: Serotonin is an important modulator of social behaviour. Individual differences in serotonergic signalling are considered to be a marker of personality that is stable throughout lifetime. While a large body of evidence indicates that central serotonin levels are inversely related to aggression and sexual behaviour in adult rats, the relationship between serotonin and social behaviour during peri-adolescence has hardly been explored. OBJECTIVE: To study the effect of acute and constitutive increases in serotonin neurotransmission on social behaviour in peri-adolescent rats. MATERIALS AND METHODS: Social behaviour in peri-adolesent rats (28-35 days old) was studied after genetic ablation of the serotonin transporter, causing constitutively increased extra-neuronal serotonin levels, and after acute treatment with the serotonin reuptake inhibitor fluoxetine or the serotonin releasing agent 3,4-methylenedioxymethamphetamine (MDMA). A distinction was made between social play behaviour that mainly occurs during peri-adolescence, and non-playful social interactions that are abundant during the entire lifespan of rats. RESULTS: In serotonin transporter knockout rats, social play behaviour was markedly reduced, while non-playful aspects of social interaction were unaffected. Acute treatment with fluoxetine or MDMA dose-dependently inhibited social play behaviour. MDMA also suppressed non-playful social interaction but at higher doses than those required to reduce social play. Fluoxetine did not affect non-playful social interaction. CONCLUSIONS: These data show that both acute and constitutive increases in serotonergic neurotransmission reduce social play behaviour in peri-adolescent rats. Together with our previous findings of reduced aggressive and sexual behaviour in adult serotonin transporter knockout rats, these data support the notion that serotonin modulates social behaviour in a trait-like manner
    corecore