297 research outputs found

    The Geometry of Integrable and Superintegrable Systems

    Full text link
    The group of automorphisms of the geometry of an integrable system is considered. The geometrical structure used to obtain it is provided by a normal form representation of integrable systems that do not depend on any additional geometrical structure like symplectic, Poisson, etc. Such geometrical structure provides a generalized toroidal bundle on the carrier space of the system. Non--canonical diffeomorphisms of such structure generate alternative Hamiltonian structures for complete integrable Hamiltonian systems. The energy-period theorem provides the first non--trivial obstruction for the equivalence of integrable systems

    A novel CRISPR/Cas9-based iduronate-2-sulfatase (IDS) knockout human neuronal cell line reveals earliest pathological changes

    Get PDF
    Multiple complex intracellular cascades contributing to Hunter syndrome (mucopolysaccharidosis type II) pathogenesis have been recognized and documented in the past years. However, the hierarchy of early cellular abnormalities leading to irreversible neuronal damage is far from being completely understood. To tackle this issue, we have generated two novel iduronate-2-sulfatase (IDS) loss of function human neuronal cell lines by means of genome editing. We show that both neuronal cell lines exhibit no enzymatic activity and increased GAG storage despite a completely different genotype. At a cellular level, they display reduced differentiation, significantly decreased LAMP1 and RAB7 protein levels, impaired lysosomal acidification and increased lipid storage. Moreover, one of the two clones is characterized by a marked decrease of the autophagic marker p62, while none of the two mutants exhibit marked oxidative stress and mitochondrial morphological changes. Based on our preliminary findings, we hypothesize that neuronal differentiation might be significantly affected by IDS functional impairment

    Stopping of Charged Particles in a Magnetized Classical Plasma

    Get PDF
    The analytical and numerical investigations of the energy loss rate of the test particle in a magnetized electron plasma are developed on the basis of the Vlasov-Poisson equations, and the main results are presented. The Larmor rotation of a test particle in a magnetic field is taken into account. The analysis is based on the assumption that the energy variation of the test particle is much less than its kinetic energy. The obtained general expression for stopping power is analyzed for three cases: (i) the particle moves through a collisionless plasma in a strong homogeneous magnetic field; (ii) the fast particle moves through a magnetized collisionless plasma along the magnetic field; and (iii) the particle moves through a magnetized collisional plasma across a magnetic field. Calculations are carried out for the arbitrary test particle velocities in the first case, and for fast particles in the second and third cases. It is shown that the rate at which a fast test particle loses energy while moving across a magnetic field may be much higher than the loss in the case of motion through plasma without magnetic field.Comment: 14 pages, 3 figures, LaTe

    SN 2013dx associated with GRB 130702A: a detailed photometric and spectroscopic monitoring and a study of the environment

    Get PDF
    Long duration gamma-ray bursts (GRBs) and broad-line, type Ic supernovae (SNe) are strongly connected. We aim at characterizing SN 2013dx, associated with GRB\,130702A, through sensitive and extensive ground-based observational campaigns in the optical-IR band. We monitored the field of the Swift GRB 130702A (redshift z = 0.145) using the 8.2-m VLT, the 3.6-m TNG and the 0.6-m REM telescopes during the time interval between 4 and 40 days after the burst. Photometric and spectroscopic observations revealed the presence of the associated Type Ic SN 2013dx. Our multi-band photometry allowed the construction of a bolometric light curve.} The bolometric light curve of SN 2013dx resembles that of 2003dh (associated with GRB 030329), but is ~10% faster and ~25% dimmer. From this we infer a synthesized 56Ni mass of ~0.2 solar masses. The multi-epoch optical spectroscopy shows that the SN 2013dx behavior is best matched by SN 1998bw, among the other well-known low-redshift SNe associated with GRBs and XRFs, and by SN 2010ah, an energetic Type Ic SN not associated with any GRB. The photospheric velocity of the ejected material declines from ~2.7X10^4 km/s at 8 rest frame days from the explosion, to ~3.5X10^3 km/s at 40 days. These values are extremely close to those of SN1998bw and 2010ah. We deduce for SN 2013dx a kinetic energy of ~35X10^51 erg, and an ejected mass of ~7 solar masses. This suggests that the progenitor of SN2013dx had a mass of ~25 solar masses, i.e., 15-20% less massive than that of SN 1998bw. Finally, we performed a study of the SN 2013dx environment, through spectroscopy of the closeby galaxies. 9 out of the 14 inspected galaxies lie within 0.03 in redshift from z=0.145, indicating that the host of GRB 130702A/SN 2013dx belongs to a group of galaxies, an unprecedented finding for a GRB-associated SN and, to our knowledge, for long GRBs in general

    Simultaneous multiwavelength observations of the Low/Hard State of the X-ray transient source SWIFT J1753.5-0127

    Get PDF
    We report the results of simultaneous multiwavelength observations of the X-ray transient source SWIFT J1753.5-0127 performed with INTEGRAL, RXTE, NTT, REM and VLA on 2005 August 10-12. The source, which underwent an X-ray outburst since 2005 May 30, was observed during the INTEGRAL Target of Opportunity program dedicated to new X-ray novae located in the Galactic Halo. Broad-band spectra and fast timing variability properties of SWIFT J1753.5-0127 are analyzed together with the optical, near infra-red and radio data. We show that the source was significantly detected up to 600 keV with Comptonization parameters and timing properties typical of the so-called Low/Hard State of black hole candidates. We build a spectral energy distribution and we show that SWIFT J1753.5-0127 does not follow the usual radio/X-ray correlation of X-ray binaries in the Low/Hard State. We give estimates of distance and mass. We conclude that SWIFT J1753.5-0127 belongs to the X-ray nova class and that it is likely a black hole candidate transient source of the Galactic Halo which remained in the Low/Hard State during its main outburst. We discuss our results within the context of Comptonization and jet models.Comment: Accepted for publication in ApJ, 25 pages, 4 tables, 11 figures (3 in color

    Long-range attraction between particles in dusty plasma and partial surface tension of dusty phase boundary

    Full text link
    Effective potential of a charged dusty particle moving in homogeneous plasma has a negative part that provides attraction between similarly charged dusty particles. A depth of this potential well is great enough to ensure both stability of crystal structure of dusty plasma and sizable value of surface tension of a boundary surface of dusty region. The latter depends on the orientation of the surface relative to the counter-ion flow, namely, it is maximal and positive for the surface normal to the flow and minimal and negative for the surface along the flow. For the most cases of dusty plasma in a gas discharge, a value of the first of them is more than sufficient to ensure stability of lenticular dusty phase void oriented across the counter-ion flow.Comment: LATEX, REVTEX4, 7 pages, 6 figure

    The afterglow and host galaxy of GRB 090205: evidence for a Ly-alpha emitter at z=4.65

    Get PDF
    Gamma-ray bursts have been proved to be detectable up to distances much larger than any other astrophysical object, providing the most effective way, complementary to ordinary surveys, to study the high redshift universe. To this end, we present here the results of an observational campaign devoted to the study of the high-z GRB 090205. We carried out optical/NIR spectroscopy and imaging of GRB 090205 with the ESO-VLT starting from hours after the event up to several days later to detect the host galaxy. We compared the results obtained from our optical/NIR observations with the available Swift high-energy data of this burst. Our observational campaign led to the detection of the optical afterglow and host galaxy of GRB 090205 and to the first measure of its redshift, z=4.65. Similar to other, recent high-z GRBs, GRB 090205 has a short duration in the rest-frame with T_{90,rf}=1.6 s, which suggests the possibility that it might belong to the short GRBs class. The X-ray afterglow of GRB 090205 shows a complex and interesting behaviour with a possible rebrightening at 500-1000s from the trigger time and late flaring activity. Photometric observations of the GRB 090205 host galaxy argue in favor of a starburst galaxy with a stellar population younger than ~ 150 Myr. Moreover, the metallicity of Z > 0.27 Z_Sun derived from the GRB afterglow spectrum is among the highest derived from GRB afterglow measurement at high-z, suggesting that the burst occurred in a rather enriched envirorment. Finally, a detailed analysis of the afterglow spectrum shows the existence of a line corresponding to Lyman-alpha emission at the redshift of the burst. GRB 090205 is thus hosted in a typical Lyman-alpha emitter (LAE) at z=4.65. This makes the GRB 090205 host the farthest GRB host galaxy, spectroscopically confirmed, detected to date.Comment: Accepted for publication in Astronomy and Astrophysics; 8 pages, 7 figure

    The Optical SN 2012bz Associated with the Long GRB 120422A

    Full text link
    The association of Type Ic SNe with long-duration GRBs is well established. We endeavor, through accurate ground-based observational campaigns, to characterize these SNe at increasingly high redshifts. We obtained a series of optical photometric and spectroscopic observations of the Type Ic SN2012bz associated with the Swift long-duration GRB120422A (z=0.283) using the 3.6-m TNG and the 8.2-m VLT telescopes. The peak times of the light curves of SN2012bz in various optical filters differ, with the B-band and i'-band light curves reaching maximum at ~9 and ~23 rest-frame days, respectively. The bolometric light curve has been derived from individual bands photometric measurements, but no correction for the unknown contribution in the near-infrared (probably around 10-15%) has been applied. Therefore, the present light curve should be considered as a lower limit to the actual UV-optical-IR bolometric light curve. This pseudo-bolometric curve reaches its maximum (Mbol = -18.56 +/- 0.06) at 13 +/- 1 rest-frame days; it is similar in shape and luminosity to the bolometric light curves of the SNe associated with z<0.2 GRBs and more luminous than those of SNe associated with XRFs. A comparison with the model generated for the bolometric light curve of SN2003dh suggests that SN2012bz produced only about 15% less 56Ni than SN2003dh, about 0.35 Msol. Similarly the VLT spectra of SN2012bz, after correction for Galactic extinction and for the contribution of the host galaxy, suggest comparable explosion parameters with those observed in SN2003dh (EK~3.5 x 10^52 erg, Mej~7 Msol) and a similar progenitor mass (~25-40 Msol). GRB120422A is consistent with the Epeak-Eiso and the EX,iso-Egamma,iso-E_peak relations. GRB120422A/SN2012bz shows the GRB-SN connection at the highest redshift so far accurately monitored both photometrically and spectroscopically.Comment: 7 pages, 6 figures, 2 tables, accepted for publication in Astronomy & Astrophysic
    • …
    corecore