40 research outputs found

    Effects of water pollution and river fragmentation on population genetic structure of invasive mosquitofish

    Get PDF
    We analyzed variation at the GPI-2 locus and eleven microsatellite loci of eastern mosquitofish Gambusia holbrooki populations introduced to the Ebro River (Spain), sampling above and below a dam (Flix Reservoir) where severe chronic pollution has been well documented. Allele frequency changes at the GPI-2 locus in the sites nearest to the polluted sediments agree with previous results from studies in mercury-exposed populations of this highly invasive fish. Genetic distinction of the mosquitofish collected close to the polluted sediments was detected at the GPI locus but also at the presumptive neutral microsatellite loci. Recent migration rates estimated from microsatellites indicated that around 30% of fish collected in a specific location were immigrants from upstream and downstream sources. Such high migration rates probably contribute to the mosquitofish's invasive success and suggest that the consequences on the mosquitofish regional genetic structured of high levels of water toxicants could be mediated by immigration from other sites, but the effect of pollutants on local diversity might be higher than observed here.info:eu-repo/semantics/acceptedVersio

    Integrating multi-taxon palaeogenomes and sedimentary ancient DNA to study past ecosystem dynamics

    Get PDF
    Ancient DNA (aDNA) has played a major role in our understanding of the past. Important advances in the sequencing and analysis of aDNA from a range of organisms have enabled a detailed understanding of processes such as past demography, introgression, domestication, adaptation and speciation. However, to date and with the notable exception of microbiomes and sediments, most aDNA studies have focused on single taxa or taxonomic groups, making the study of changes at the community level challenging. This is rather surprising because current sequencing and analytical approaches allow us to obtain and analyse aDNA from multiple source materials. When combined, these data can enable the simultaneous study of multiple taxa through space and time, and could thus provide a more comprehensive understanding of ecosystem-wide changes. It is therefore timely to develop an integrative approach to aDNA studies by combining data from multiple taxa and substrates. In this review, we discuss the various applications, associated challenges and future prospects of such an approach

    Genomic insights into the conservation status of the world’s last remaining Sumatran rhinoceros populations

    Get PDF
    Highly endangered species like the Sumatran rhinoceros are at risk from inbreeding. Five historical and 16 modern genomes from across the species range show mutational load, but little evidence for local adaptation, suggesting that future inbreeding depression could be mitigated by assisted gene flow among populations. Small populations are often exposed to high inbreeding and mutational load that can increase the risk of extinction. The Sumatran rhinoceros was widespread in Southeast Asia, but is now restricted to small and isolated populations on Sumatra and Borneo, and most likely extinct on the Malay Peninsula. Here, we analyse 5 historical and 16 modern genomes from these populations to investigate the genomic consequences of the recent decline, such as increased inbreeding and mutational load. We find that the Malay Peninsula population experienced increased inbreeding shortly before extirpation, which possibly was accompanied by purging. The populations on Sumatra and Borneo instead show low inbreeding, but high mutational load. The currently small population sizes may thus in the near future lead to inbreeding depression. Moreover, we find little evidence for differences in local adaptation among populations, suggesting that future inbreeding depression could potentially be mitigated by assisted gene flow among populations

    Early farmers from across Europe directly descended from Neolithic Aegeans

    Get PDF
    Farming and sedentism first appeared in southwestern Asia during the early Holocene and later spread to neighboring regions, including Europe, along multiple dispersal routes. Conspicuous uncertainties remain about the relative roles of migration, cultural diffusion, and admixture with local foragers in the early Neolithization of Europe. Here we present paleogenomic data for five Neolithic individuals from northern Greece and northwestern Turkey spanning the time and region of the earliest spread of farming into Europe. We use a novel approach to recalibrate raw reads and call genotypes from ancient DNA and observe striking genetic similarity both among Aegean early farmers and with those from across Europe. Our study demonstrates a direct genetic link between Mediterranean and Central European early farmers and those of Greece and Anatolia, extending the European Neolithic migratory chain all the way back to southwestern Asia

    Population genomics of the critically endangered kākāpƍ

    Get PDF
    Summary The kākāpƍ is a flightless parrot endemic to New Zealand. Once common in the archipelago, only 201 individuals remain today, most of them descending from an isolated island population. We report the first genome-wide analyses of the species, including a high-quality genome assembly for kākāpƍ, one of the first chromosome-level reference genomes sequenced by the Vertebrate Genomes Project (VGP). We also sequenced and analyzed 35 modern genomes from the sole surviving island population and 14 genomes from the extinct mainland population. While theory suggests that such a small population is likely to have accumulated deleterious mutations through genetic drift, our analyses on the impact of the long-term small population size in kākāpƍ indicate that present-day island kākāpƍ have a reduced number of harmful mutations compared to mainland individuals. We hypothesize that this reduced mutational load is due to the island population having been subjected to a combination of genetic drift and purging of deleterious mutations, through increased inbreeding and purifying selection, since its isolation from the mainland ∌10,000 years ago. Our results provide evidence that small populations can survive even when isolated for hundreds of generations. This work provides key insights into kākāpƍ breeding and recovery and more generally into the application of genetic tools in conservation efforts for endangered species

    Genetic diversity and population structure of the non-native Eastern mosquitofish (Gambusia holbrooki) in Mediterranean streams

    Get PDF
    Mosquitofish is a small, voracious, highly fecund freshwater fish species originated from northeaster America, that was introduced worldwide to control mosquito populations. In this thesis we have studied the genetics of the invasion of Mediterranean streams by the mosquitofish (Gambusia holbrooki) to discover some of the aspects that drive their successfully invasive life history. Comparison of introduced populations with the American sources of invasion indicated that there was no loss of genetic diversity due to the invasion process. Local genetic diversity levels and overall population structure were maintained among generations in introduced populations. We observed adaptive response to pollutants in the Flix reservoir, Ebro River, but that human perturbations do not prevent mosquitofish dispersal along rivers. Finally, unregulated human-assisted translocations probably increase the opportunities for colonization of new environments, and therefore need to be controlled.La gambĂșsia Ă©s un peix molt voraç i fecund originari de les masses d’aigua dolça del nord-est d’AmĂšrica, que va a ser introduĂŻda en tot el mĂłn pel control biolĂČgic de les poblacions de mosquit. En aquesta tesis se analitzen els processos genĂštics relacionats amb l’ùxit invasor de la gambĂșsia (Gambusia holbrooki) en les conques mediterrĂ nies. Les poblacions de gambusia introduĂŻdes catalanes mantenen els nivells de diversitat genĂštica presents a les poblacions AmericĂ nes que van ser les fonts dels invasors de Europa. En aquestas poblacions introduĂŻdes, els nivells locals i patrons hidrogrĂ fics de diversitat genĂštica es mantenen entre generacions. Hi a una resposta selectiva als contaminants en les poblacions de gamusia a l’embassament de Flix, riu Ebro, perĂČ aquestes pertorbacions humanes no limiten la dispersiĂł de la gambĂșsia. Finalment, les translocacions d’exemplars per l’home augmenten les oportunitats de colonitzar nous ambients i per aixĂČ han de ser controlats

    Genomic survey provides insights into the evolutionary changes that occurred during European expansion of the invasive mosquitofish (Gambusia holbrooki)

    No full text
    Biological invasions rank among the main global threats for biodiversity. The Eastern mosquitofish (Gambusia holbrooki) is considered one of the 100 world worst invasive species due to its high adaptation capability to new environments. Using the restriction-site-associated DNA tags (RADtags), introduced European locations were compared against native US mosquitofish populations to analyse genomic changes that occurred during invasive process of European locations. After filtering, 7724 RADtags containing only one SNP were retained for population studies. Comparative genomics indicated that 186 of these RADtags matched sequences in the transcriptome of Xyphophorus maculatus, the most closely related genome available. Genomic analyses showed that invasive populations show high reductions in diversity. Further, analyses of population structuring based on these data are concordant with previous analyses based on microsatellites. It is concluded that during the invasion process genetic drift was the main evolutionary force affecting patterns of diversity and population structure. While recognizing that positive selection could be masked by the strong drift during founder events, adaptive processes were evidenced in a reduced number of RADtags (<2%), with only one of these in a putative coding region. Surprisingly, balancing selection was detected in several coding RADtags, suggesting that the preservation of polymorphism in specific genes could be more important than the average population diversity for the population maintenance at any location, particularly for the survival of introduced population

    Historical genomes reveal the genomic consequences of recent population decline in eastern gorillas

    No full text
    Altres ajuts: Obra Social "La Caixa" and CERCA Programme/Generalitat de CatalunyaMany endangered species have experienced severe population declines within the last centuries [1, 2]. However, despite concerns about negative fitness effects resulting from increased genetic drift and inbreeding, there is a lack of empirical data on genomic changes in conjunction with such declines [3, 4, 5, 6, 7]. Here, we use whole genomes recovered from century-old historical museum specimens to quantify the genomic consequences of small population size in the critically endangered Grauer's and endangered mountain gorillas. We find a reduction of genetic diversity and increase in inbreeding and genetic load in the Grauer's gorilla, which experienced severe population declines in recent decades. In contrast, the small but relatively stable mountain gorilla population has experienced little genomic change during the last century. These results suggest that species histories as well as the rate of demographic change may influence how population declines affect genome diversity

    Population genomics reveals lack of greater white-fronted introgression into the Swedish lesser white-fronted goose

    Get PDF
    Interspecific introgression is considered a potential threat to endangered taxa. One example where this has had a major impact on conservation policy is the lesser white-fronted goose (LWfG). After a dramatic decline in Sweden, captive breeding birds were released between 1981–1999 with the aim to reinforce the population. However, the detection of greater white-fronted goose (GWfG) mitochondrial DNA in the LWfG breeding stock led to the release program being dismantled, even though the presence of GWfG introgression in the actual wild Swedish LWfG population was never documented. To examine this, we sequenced the complete genomes of 21 LWfG birds from the Swedish, Russian and Norwegian populations, and compared these with genomes from other goose species, including the GWfG. We found no evidence of interspecific introgression into the wild Swedish LWfG population in either nuclear genomic or mitochondrial data. Moreover, Swedish LWfG birds are genetically distinct from the Russian and Norwegian populations and display comparatively low genomic diversity and high levels of inbreeding. Our findings highlight the utility of genomic approaches in providing scientific evidence that can help improve conservation management as well as policies for breeding and reinforcement programmes
    corecore