36 research outputs found

    TiO2 Nanoparticles Are Phototoxic to Marine Phytoplankton

    Get PDF
    Nanoparticulate titanium dioxide (TiO2) is highly photoactive, and its function as a photocatalyst drives much of the application demand for TiO2. Because TiO2 generates reactive oxygen species (ROS) when exposed to ultraviolet radiation (UVR), nanoparticulate TiO2 has been used in antibacterial coatings and wastewater disinfection, and has been investigated as an anti-cancer agent. Oxidative stress mediated by photoactive TiO2 is the likely mechanism of its toxicity, and experiments demonstrating cytotoxicity of TiO2 have used exposure to strong artificial sources of ultraviolet radiation (UVR). In vivo tests of TiO2 toxicity with aquatic organisms have typically shown low toxicity, and results across studies have been variable. No work has demonstrated that photoactivity causes environmental toxicity of TiO2 under natural levels of UVR. Here we show that relatively low levels of ultraviolet light, consistent with those found in nature, can induce toxicity of TiO2 nanoparticles to marine phytoplankton, the most important primary producers on Earth. No effect of TiO2 on phytoplankton was found in treatments where UV light was blocked. Under low intensity UVR, ROS in seawater increased with increasing nano-TiO2 concentration. These increases may lead to increased overall oxidative stress in seawater contaminated by TiO2, and cause decreased resiliency of marine ecosystems. Phototoxicity must be considered when evaluating environmental impacts of nanomaterials, many of which are photoactive

    Insight on the fundamentals of advanced oxidation processes. Role and review of the determination methods of reactive oxygen species

    Get PDF
    Advanced oxidation processes (AOPs) have known increased application to treat wastewaters containing recalcitrant compounds that are hardly degraded by conventional technologies. AOPs are characterized by the formation of strong oxidants such as hydroxyl radicals, superoxide anions, hydroperoxyl radicals and singlet oxygen, which react with the contaminant, contributing to its degradation. This paper provides an overview of the determination methods of reactive oxygen species, ROS, in the application of AOPs; the methods developed in the available literature for the detection and quantification of ROS are reviewed as a first step in the assessment and detailed description of the mechanisms involved in the oxidation reactions, focusing on the critical analysis of the main strengths and weaknesses presented by the probe molecules employed in the evaluated studies.This research was supported by the Ministry of Economy and Competitiveness (MINECO/SPAIN) and European Regional Development Fund (ERDF) under the project CTQ2011-25262
    corecore