10 research outputs found

    X-ray properties of BzK-selected galaxies in the deepest X-ray fields

    Full text link
    We investigate the X-ray properties of BzK-selected galaxies at z ∼\sim 2 using deep X-ray data in the Chandra Deep Field South and North (CDFS and CDFN). Of these we directly detect in X-rays 49 sBzKs in CDFS and 32 sBzKs in CDFN. Stacking the undetected sources also reveals a significant X-ray signal. Investigating the X-ray detection rate and stacked flux versus the IR excess parameter (i.e. SFRtotal/SFRUV,corr), we find no strong evidence for an increased X-ray detection rate, or a harder X-ray spectrum in IR Excess sBzKs. This is particularly the case when one accounts for the strong correlation between the IR excess parameter and the bolometric IR luminosity (LIR), e.g. when controlling for LIR, the IR Non-Excess sBzKs show a detection rate at least as high. While both direct detections and stacking suggest that the AGN fraction in sBzK galaxies is high, there is no clear evidence for widespread Compton thick activity in either the sBzK population generally, or the IR Excess sBzK subsample. The very hard X-ray signal obtained for the latter in earlier work was most likely contaminated by a few hard X-ray sources now directly detected in deeper X-ray data. The X-ray detection fraction of passive BzK galaxies in our sample is if anything higher than that of sBZKs, so there is no evidence for coeval black hole growth and star formation from X-ray analysis of the BzK populations. Because increased AGN activity in the IR excess population is not indicated by our X-ray analysis, it appears that the bulk of the IR Excess sBzK population are luminous star-forming galaxies whose SFRs are either overestimated at 24 microns, underestimated in the UV, or both. This conclusion reinforces recent results from Herschel which show similar effects.Comment: 17 pages, 8 Figures, 7 Table

    Obscuration-dependent evolution of Active Galactic Nuclei

    Get PDF
    We aim to constrain the evolution of AGN as a function of obscuration using an X-ray selected sample of ∼2000\sim2000 AGN from a multi-tiered survey including the CDFS, AEGIS-XD, COSMOS and XMM-XXL fields. The spectra of individual X-ray sources are analysed using a Bayesian methodology with a physically realistic model to infer the posterior distribution of the hydrogen column density and intrinsic X-ray luminosity. We develop a novel non-parametric method which allows us to robustly infer the distribution of the AGN population in X-ray luminosity, redshift and obscuring column density, relying only on minimal smoothness assumptions. Our analysis properly incorporates uncertainties from low count spectra, photometric redshift measurements, association incompleteness and the limited sample size. We find that obscured AGN with NH>1022 cm−2N_{H}>{\rm 10^{22}\, cm^{-2}} account for 77−5+4%{77}^{+4}_{-5}\% of the number density and luminosity density of the accretion SMBH population with LX>1043 erg/sL_{{\rm X}}>10^{43}\text{ erg/s}, averaged over cosmic time. Compton-thick AGN account for approximately half the number and luminosity density of the obscured population, and 38−7+8%{38}^{+8}_{-7}\% of the total. We also find evidence that the evolution is obscuration-dependent, with the strongest evolution around NH≈1023 cm−2N_{H}\thickapprox10^{23}\text{ cm}^{-2}. We highlight this by measuring the obscured fraction in Compton-thin AGN, which increases towards z∼3z\sim3, where it is 25%25\% higher than the local value. In contrast the fraction of Compton-thick AGN is consistent with being constant at ≈35%\approx35\%, independent of redshift and accretion luminosity. We discuss our findings in the context of existing models and conclude that the observed evolution is to first order a side-effect of anti-hierarchical growth.Comment: Published in Ap

    CANDELS/GOODS-S, CDFS, ECDFS: Photometric Redshifts For Normal and for X-Ray-Detected Galaxies

    Get PDF
    We present photometric redshifts and associated probability distributions for all detected sources in the Extended Chandra Deep Field South (ECDFS). The work makes use of the most up-to-date data from the Cosmic Assembly Near-IR Deep Legacy Survey (CANDELS) and the Taiwan ECDFS Near-Infrared Survey (TENIS) in addition to other data. We also revisit multi-wavelength counterparts for published X-ray sources from the 4Ms-CDFS and 250ks-ECDFS surveys, finding reliable counterparts for 1207 out of 1259 sources (∼96%\sim 96\%). Data used for photometric redshifts include intermediate-band photometry deblended using the TFIT method, which is used for the first time in this work. Photometric redshifts for X-ray source counterparts are based on a new library of AGN/galaxy hybrid templates appropriate for the faint X-ray population in the CDFS. Photometric redshift accuracy for normal galaxies is 0.010 and for X-ray sources is 0.014, and outlier fractions are 4%4\% and 5.4%5.4\% respectively. The results within the CANDELS coverage area are even better as demonstrated both by spectroscopic comparison and by galaxy-pair statistics. Intermediate-band photometry, even if shallow, is valuable when combined with deep broad-band photometry. For best accuracy, templates must include emission lines.Comment: The paper has been accepted by ApJ. The materials we provide are available under [Surveys] > [CDFS] through the portal http://www.mpe.mpg.de/XraySurvey

    A CANDELS WFC3 Grism Study of Emission-Line Galaxies at z~2: A Mix of Nuclear Activity and Low-Metallicity Star Formation

    Full text link
    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z~2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with 1-sigma detections of emission lines to f > 2.5x10^{-18} erg/s/cm^2, means that the galaxies in the sample are typically ~7 times less massive (median M_* = 10^{9.5} M_sun) than previously studied z~2 emission-line galaxies. Despite their lower mass, the galaxies have OIII/Hb ratios which are very similar to previously studied z~2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the OIII emission line is more spatially concentrated than the Hb emission line with 98.1 confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(OIII)/L(0.5-10 keV) ratio is intermediate between typical z~0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked OIII spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei.Comment: ApJ accepted. 8 pages, 6 figure

    A CANDELS WFC3 Grism Study of Emission-Line Galaxies at Z approximates 2: A mix of Nuclear Activity and Low-Metallicity Star Formation

    Get PDF
    We present Hubble Space Telescope Wide Field Camera 3 slitless grism spectroscopy of 28 emission-line galaxies at z approximates 2, in the GOODS-S region of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). The high sensitivity of these grism observations, with > 5-sigma detections of emission lines to f > 2.5 X 10(exp -18( erg/s/ square cm, means that the galaxies in the sample are typically approximately 7 times less massive (median M(star). = 10(exp 9.5)M(solar)) than previously studied z approximates 2 emission-line galaxies. Despite their lower mass, the galaxies have [O-III]/H-Beta ratios which are very similar to previously studied z approximates 2 galaxies and much higher than the typical emission-line ratios of local galaxies. The WFC3 grism allows for unique studies of spatial gradients in emission lines, and we stack the two-dimensional spectra of the galaxies for this purpose. In the stacked data the [O-III] emission line is more spatially concentrated than the H-Beta emission line with 98.1% confidence. We additionally stack the X-ray data (all sources are individually undetected), and find that the average L(sub [O-III])/L(sub 0.5.10keV) ratio is intermediate between typical z approximates 0 obscured active galaxies and star-forming galaxies. Together the compactness of the stacked [O-III] spatial profile and the stacked X-ray data suggest that at least some of these low-mass, low-metallicity galaxies harbor weak active galactic nuclei

    The relationship between obscured AGN and their host galaxies

    Get PDF
    This thesis presents an investigation into obscured Active Galactic Nuclei (AGN) activity at high redshift and the interactions they share with their host galaxies. Using a combination of X-ray spectral fitting and X-ray stacking analyses, three studies are undertaken in this work. The first study is a reinvestigation of a specific group of X-ray undetected mid-IR excess galaxies at z ~ 2 that have previously been identified as Compton thick AGN candidates through X-ray stacking analysis. The parent sample of optically identified galaxies is found to possess above average obscured AGN activity. The galaxies exhibiting mid-IR excess, however, do not exhibit elevated levels of obscured AGN activity relative to the parent sample. Key to this result is the increased depth of X-ray observations, which resolves hard X-ray sources that had biased earlier stacking analyses. The second study concerns the nature of AGN residing in massive galaxies at z ~ 2. The highlight of this research is the identification of two accretion modes which are dependent upon host galaxy compactness: a “transformative mode for compact galaxies and a “maintenance mode for extended galaxies. AGN in the transformative mode are heavily obscured and X-ray luminous and are thought to rapidly quench star formation in their host galaxies through violent feedback. The AGN in “maintenance mode have lower luminosities and tend to be unobscured, but appear to suppress further star formation in their host galaxies through a gentler feedback process. The third study is a comparison of colour-excitation (CEx) and mass-excitation (MEx) classification techniques designed to identify Type 2 AGN out to z ~ 0.8. The CEx technique is found to identify obscured AGN with a high degree of accuracy, with X-ray stacking revealing many as yet X-ray undetected sources. The MEx technique is adept at identifying X-ray detected AGN but is less accurate at isolating obscured sources.Open Acces
    corecore