549 research outputs found
A Perspective of Coagulation Dysfunction in Multiple Sclerosis and in Experimental Allergic Encephalomyelitis
A key role of both coagulation and vascular thrombosis has been reported since the first descriptions of multiple sclerosis (MS). Subsequently, the observation of a close concordance between perivascular fibrin(ogen) deposition and the occurrence of clinical signs in experimental allergic encephalomyelitis (EAE), an animal model of MS, led to numerous investigations focused on the role of thrombin and fibrin(ogen). Indeed, the activation of microglia, resident innate immune cells, occurs early after fibrinogen leakage in the pre-demyelinating lesion stage of EAE and MS. Thrombin has both neuroprotective and pro-apoptotic effects according to its concentration. After exposure to high concentrations of thrombin, astrocytes become reactive and lose their neuroprotective and supportive functions, microglia proliferate, and produce reactive oxygen species, IL-1β, and TNFα. Heparin inhibits the thrombin generation and suppresses EAE. Platelets play an important role too. Indeed, in the acute phase of the disease, they begin the inflammatory response in the central nervous system by producing of IL-1alpha and triggering and amplifying the immune response. Their depletion, on the contrary, ameliorates the course of EAE. Finally, it has been proven that the use of several anticoagulant agents can successfully improve EAE. Altogether, these studies highlight the role of the coagulation pathway in the pathophysiology of MS and suggest possible therapeutic targets that may complement existing treatments
A Secondary-Control Based Fault Current Limiter for Four-Wire Three Phase Inverter-Interfaced DGs
Next-Generation Shipboard DC Power System: Introduction Smart Grid and dc Microgrid Technologies into Maritime Electrical Networks
In recent years, evidence has suggested that the global energy system is on the verge of a drastic revolution. The evolutionary development in power electronic technologies, the emergence of high-performance energy storage devices, and the ever-increasing penetration of renewable energy sources (RESs) are commonly recognized as the major driving forces of the revolution. The explosion in consumer electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase in research interest and industrial applications. In addition, the concept of flexible and smart distribution has also been proposed, which tends to exploit distributed generation and pack together the distributed RESs and local electrical loads as an independent and self-sustainable entity, namely a microgrid. At present, research in the area of dc microgrids has investigated and developed a series of advanced methods in control, management, and objective-oriented optimization that would establish the technical interface enabling future applications in multiple industrial areas, such as smart buildings, electric vehicles, aerospace/aircraft power systems, and maritime power systems
Markers for different glial cell responses in multiple sclerosis: clinical and pathological correlations
Disease progression in multiple sclerosis occurs within the interface of glial activation and gliosis. This study aimed to investigate the relationship between biomarkers of different glial cell responses: (i) to disease dynamics and the clinical subtypes of multiple sclerosis; (ii) to disability; and (iii) to cross‐validate these findings in a post‐mortem study. To address the first goal, 51 patients with multiple sclerosis [20 relapsing remitting (RR), 21 secondary progressive (SP) and 10 primary progressive (PP)] and 51 neurological control patients were included. Disability was assessed using the ambulation index (AI), the Expanded Disability Status Scale score (EDSS) and the 9‐hole PEG test (9HPT). Patients underwent lumbar puncture within 7 days of clinical assessment. Post‐mortem brain tissue (12 multiple sclerosis and eight control patients) was classified histologically and adjacent sites were homogenized for protein analysis. S100B, ferritin and glial‐fibrillary acidic protein (GFAP) were quantified in CSF and brain‐tissue homogenate by ELISA (enzyme‐linked immunosorbent assay) techniques developed in‐house. There was a significant trend for increasing S100B levels from PP to SP to RR multiple sclerosis (P 6.5) had significantly higher CSF GFAP levels than less disabled multiple sclerosis or control patients (P < 0.01 and P < 0.001, respectively). There was a correlation between GFAP levels and ambulation in SP multiple sclerosis (r = 0.57, P < 0.01), and between S100B level and the 9HPT in PP multiple sclerosis patients (r = –0.85, P < 0.01). The post‐mortem study showed significantly higher S100B levels in the acute than in the subacute plaques (P < 0.01), whilst ferritin levels were elevated in all multiple sclerosis lesion stages. Both GFAP and S100B levels were significantly higher in the cortex of multiple sclerosis than in control brain homogenate (P < 0.001 and P < 0.05, respectively). We found that S100B is a good marker for the relapsing phase of the disease (confirmed by post‐mortem observation) as opposed to ferritin, which is elevated throughout the entire course. GFAP correlated with disability scales and may therefore be a marker for irreversible damage. The results of this study have broad implications for finding new and sensitive outcome measures for treatment trials that aim to delay the development of disability. They may also be considered in future classifications of multiple sclerosis patients
Expression of costimulatory molecules B7-1 (CD80), B7-2 (CD86), and interleukin 12 cytokine in multiple sclerosis lesions.
Tissue Plasminogen Activator–Mediated Fibrinolysis Protects against Axonal Degeneration and Demyelination after Sciatic Nerve Injury
Tissue plasminogen activator (tPA) is a serine protease that converts plasminogen to plasmin and can trigger the degradation of extracellular matrix proteins. In the nervous system, under noninflammatory conditions, tPA contributes to excitotoxic neuronal death, probably through degradation of laminin. To evaluate the contribution of extracellular proteolysis in inflammatory neuronal degeneration, we performed sciatic nerve injury in mice. Proteolytic activity was increased in the nerve after injury, and this activity was primarily because of Schwann cell–produced tPA. To identify whether tPA release after nerve damage played a beneficial or deleterious role, we crushed the sciatic nerve of mice deficient for tPA. Axonal demyelination was exacerbated in the absence of tPA or plasminogen, indicating that tPA has a protective role in nerve injury, and that this protective effect is due to its proteolytic action on plasminogen. Axonal damage was correlated with increased fibrin(ogen) deposition, suggesting that this protein might play a role in neuronal injury. Consistent with this idea, the increased axonal degeneration phenotype in tPA- or plasminogen-deficient mice was ameliorated by genetic or pharmacological depletion of fibrinogen, identifying fibrin as the plasmin substrate in the nervous system under inflammatory axonal damage. This study shows that fibrin deposition exacerbates axonal injury, and that induction of an extracellular proteolytic cascade is a beneficial response of the tissue to remove fibrin. tPA/plasmin-mediated fibrinolysis may be a widespread protective mechanism in neuroinflammatory pathologies
- …
