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Abstract— Fault current limiters (FCLs) are one class of 

solutions to cope with the upcoming challenges in microgrid 

protection. Considering high penetration of distributed 

generations (DGs) in microgrids, the necessity of designing cheap 

and effective FCL is getting higher. This paper attempts to fill this 

gap by proposing an embedded FCL operating based on modifying 

the secondary control of DGs. As this method is designed for four-

wire system, besides cost-effectiveness, it has independency and 

flexibility to only limit the fault current of DG. In order to validate 

the proposed method, different types of faults are examined 

through an extensive simulation study. 

Index Terms— Fault current limiter, four-wire DG, Microgrid, 

Protection, Secondary control, SOGI PLL 

I.  INTRODUCTION 

In the near future structure of the power system will change 
from centralized to decentralized fashion. With introduction of 
microgrid, higher small-scale Distributed Generations (DGs) 
will be integrated into distribution system. Although this trend 
of future grid leads to lower power loss, higher reliability, and 
lower Carbone dioxide emission, implementation of high 
penetration of DGs causes new challenges for protection 
systems. These challenges include higher level of fault current, 
bidirectional nature of fault current, mechanical stress on Circuit 
Breakers (CBs) and transformers, miscoordination of 
conventional overcurrent relays, tripping of healthy feeders, 
sympathetic tripping, and week-infeed loop fault [1]-[3] .  

Several approaches have been proposed to deal with DGs 
impacts on protection system. A primitive solution is replacing 
used CBs and transformers with higher capacity ones. This is 
very costly solution and not practical solution. Other solutions 
include limiting maximum DG capacity, enhancing 
conventional protection, adaptive protection, and Fault Current 
limiter (FCL) [1]. Limiting maximum DG capacity solution is a 
cheap solution but it will limit high penetration of DGs in future 
power system. Relay-based solutions are one of the promising 
solutions for the future power system; however, it needs high 
computation to reach the desired result.  

In recent years, tremendous attention has been paid to develop 
FCLs for power systems. This solution allows higher penetration 
of DGs in the grid. The main purpose of FCL is to behave like a 
zero impedance in normal conditions and very high impedance 
in faulty conditions to limit the short-circuit current. In order to 
reach this goal, different types of FCLs including Passive FCL 

(PFCL), Superconducting FCL (SFCL), Solid State FCL 
(SSFCL), and controlled-based FCL were introduced to obtain 
the promising goal [4]-[6]. PFCLs utilize passive elements to 
limit the fault current. It is the cheapest and simplest type of 
FCL, however, the voltage drop during the normal condition is 
the main disadvantage of this approach. SFCL classified into 
two types, resistive SFCLs and inductive SFCLs. Both types 
have the advantages of low power loss during the normal 
conditions and fast response. However, high weight/size, a need 
for a special complex cooling system, and being expensive are 
their main disadvantages [7]. Recently, with the progress in 
semiconductor technology such as thyristor, Insulated Gate 
Bipolar Transistor (IGBT), and Gate Turn-Off thyristor (GTO), 
implementing SSFCL has become more feasible. This class of 
FCL has different benefits including fast response and low 
weight, but, the main drawbacks are commutation losses and on-
state losses. Nevertheless, wide-band gap power switches are a 
promising technology to address these issues [8]. Converter-
based approach implements FCL strategy within it by adding 
virtual impedance and designing switching topologies. In [9], 
the performance of series half-bridge DC-DC converter, full-
bridge DC-DC converter, and  LCL-filtered thyristor-based 
converters for this application are compared in terms of the fault 
interruption capability. In [10], the performance of multiport 
DC-DC converter for SSFCL is investigated under the ground 
and phase-phase faults. Then, [10] fault current limiting by a 
centralized control. Employing virtual impedance in parallel 
with filter is another solution to limit fault current by reducing 
current reference in proportion to output voltage [11]. In [12], a 
method based on transient virtual impedance is proposed to limit 
fault current by exerting high and low values of virtual 
impedance for the faulty and normal condition, respectively. 
Secondary control restores voltage and frequency. Regarding 
this issue, it will fight against reducing voltage during the faulty 
conditions applying by high value of virtual impedance. 

This paper modifies the structure of secondary control to 
limit the fault current to twice of the nominal current value for a 
three-phase four-wire DG inverter in Voltage-Control Mode 
(VCM) and proposes a simple but effective FCL for Current 
Control Mode (CCM). The proposed method takes advantage of 
four-wire system to limit fault current in each phase without 
effecting on healthy phase. In addition, the proposed FCL has a 
very fast response and does not cause harmonic distortion 



II. PROPOSED METHOD 

The aim of the proposed method is having a fast response of 
fault current limiting for a four-wire VSI that has a secondary 
control to fix the voltage to its nominal value. In order to reach 
this goal, the secondary level is modified to generate appropriate 
voltage reference during the faulty and unfaulty conditions. The 
following subsection describes first the control system for three-
phase four-wire inverter controlled in VCM and CCM, and then 
presents the new strategy for limiting fault current strategy. 

A. Three-phase four-wire control system 

Three-phase four-wire system is a common topology of DG 
in low-voltage microgrids to support single-phase and 
unbalanced loads by adding a path for zero-sequence current of 
the loads. Among different topologies of four-wire systems, the 
three-leg inverter with split dc-link capacitors is the popular one 
where the midpoint of the dc-link is connected to a neutral point 
(see Fig. 1) [13]. Compared to three-phase four-leg topology, it 
has lower power switch and control complexity [14]. 

 

Fig. 1. Topology of three-phase four-wire with a split dc link capacitors.  

        In isolated microgrid, at least one DG must operate in VCM 
to control both voltage and frequency and other DGs could work 
in VCM or CCM. The controller of each DG includes primary 
control and secondary control. The primary level uses droop 
control and virtual impedance to regulate the power sharing. The 
secondary control restores voltage and frequency to their 
nominal values. The control systems for  VCM and CCM VSIs 
are presented in Figs. 2 and 3, respectively. 

The inner control loops in VCM consists of outer voltage loop 
and inner current loop (both based on Proportional-Resonant, 
PR, controllers) to regulate capacitor voltage. In CCM, the 
controller mainly consists of PR current controller and active 
damping loop.    

As in natural (abc) reference frame PR controller has better 
performance than PI one [15], in the inner loop control, PR 
controllers are considered for both voltage control and current 
control, as mentioned before: 

𝐺𝑉 = 𝑘𝑉 +
2. 𝑘𝑟𝑉 . 𝜔𝑐𝑉 . 𝑆

(𝑆2 + 2. 𝜔𝑐𝑉 + 𝜔0
2)

                                                 (1) 

𝐺𝐼 = 𝑘𝐼 +
2. 𝑘𝑟𝐼 . 𝜔𝑐𝐼 . 𝑆

(𝑆2 + 2. 𝜔𝑐𝐼 + 𝜔0
2)

                                                  (2) 

where, 𝜔𝑐𝑉 and 𝜔𝑐𝐼 are the cut-off frequencies for current and 
voltage loops, respectively. In addition,  𝑘𝑉(𝑘𝐼)  and 𝑘𝑟𝑉(𝑘𝑟𝐼) 
are proportional and resonant coefficients of the voltage 
(current), respectively. In addition, if harmonic control is 
required harmonic resonant should be added [16].  

 

Fig. 2. VCM Scheme of  phase-a of the three-phase four-wire DG with a split 

dc capacitors .  

 

Fig. 3. CCM Scheme of phase-a of the three-phase four-wire DG with a split 

dc capacitors .  

In secondary control level, PI controllers are applied to generate 
proper control signals to be followed by droop controllers and 
restore both frequency and voltage to their nominal values. The 
related equations are as follows:   

𝛿𝐸 = 𝑘𝑃𝐸(𝐸𝑀𝐺
∗ − 𝐸𝑀𝐺) + 𝑘𝑖𝐸 ∫((𝐸𝑀𝐺

∗ − 𝐸𝑀𝐺))𝑑𝑡                (3) 

𝛿𝑓 = 𝑘𝑃𝑓(𝑓𝑀𝐺
∗ − 𝑓𝑀𝐺) + 𝑘𝑖𝑓 ∫((𝑓𝑀𝐺

∗ − 𝑓𝑀𝐺))𝑑𝑡                   (4) 

where, 𝑘𝑃𝐸(𝑘𝑃𝑓)  and 𝑘𝑖𝐸(𝑘𝑖𝑓)  are the parameters of PI 

controllers. Once these correction values of voltage and 
frequency are obtained, these signal values are sent to primary 
control of each DG units. 

B. Fault current limiter strategy 

According to  secondary control operation, , during the faulty 
conditions high amount of voltage amplitude is added to voltage 
reference of VCM VSIs to keep microgrid voltage within 
accepted rate. This would be at the expense of high value of VSI 
output current. On the other hand, DG has to protect itself from 
being damaged through limiting output current during the faulty 
conditions. In order to reach this goal, this paper proposes a 
multifunctional secondary control that its task is to keep voltage 
amplitude at nominal value in normal operation  as well as to 
keep output current of fault fixed to twice of its nominal value.  

In the proposed FCL (Fig. 4), secondary control has a distinct 
duty for each of normal and faulty conditions. In the normal 
condition, deviation of frequency and voltage are compensated 
by the secondary control, whereas, in the faulty condition, 
voltage reference is reduced in such a way that the injected 
current of DG is limited.  

In the case of fault, the amplitude of each phase is calculated 
by a Multiple Second-Order Generalized Integrators Phase-
Locked Loop (MSOGI-FLL). In this structure, SOGI 
Quadrature Signal Generations (SOGI-QSGs) are combined in 



parallel to detect and extract fundamental, third, fifth harmonics 
individually. This method has a good disturbance rejection 
capability, high filter capability, fast dynamic response and 
medium computation burden [17].  

As shown in Fig. 4, the fundamental component of current, 
which is obtained by MSOFI-FLL, is subtracted from twice of 
nominal current, and finally it passes through a deadband block 
and a PI controller, serially. It must be noted that the deadband 
block is utilized to only let PI controller be active when current 
amplitude is above 1.8In. It must be noted that Fig.4 is for phase-
a, the similar scheme us considered for other phases. In order to 
let proper and smooth switching between two modes of 
operations, the following criterion is taken into account: 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 |𝐼𝑚| 𝑑𝑢𝑟𝑖𝑛𝑔 𝑡ℎ𝑒 𝑙𝑎𝑠𝑡 20𝑚𝑠 > 1.8𝐼𝑛  (5) 

On the other hand, a simple limiter on produced current 
reference would be sufficient in CCM VSI to confine current to 
the twice of nominal current. The structure of FCL for CCM VSI 
is shown in Fig. 6. 

 

Fig. 4. Proposed FCL for voltage-control of phase-a of the three-phase four-

wire DG with a split dc capacitors.  

 

Fig. 5. Scheme diagram of MSOGI.  

III. SIMULATION RESULTS 

The effectiveness of the proposed method is investigated in 
a MATLAB/Simulink model of Fig. 7 consisting of three DGs 
and one load.  

 

Fig. 6. Proposed FCL for current-control of phase-a of the three-phase four-

wire DG with a split dc capacitors.  

 

Fig. 7. System model.  

TABLE I.  System parameters 

 

Type 

Parameters  
Value 

Symbol Quantity 
 

E
le

ct
ri

ca
l 

se
tu

p
 

   

 

Vdc DC Voltage 650 V 

VMG MG voltage 311 V 

F MG Frequency 50 Hz 

C Filter Capacitance 25 μF 

L Filter Inductance 1.8 mH 

Lo Output Inductance 1.8 mH 

PR Load active power 3500 W 

ZL1, ZL2, ZL3 Line resistance 2+j0.3 Ω 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

In
n
er

 L
o
o
p
s 

(V
C

M
) 

  

 

kpV Proportional coefficients of voltage 1 

krV Resonant coefficients of voltage 50 

kpI Proportional coefficients of current 20 

krI Resonant coefficients of current 1000 

ωcV cut-off frequency of voltage loop 2 Hz 

ωcI cut-off frequency of control loop 2 Hz 

In
n
er

 L
o
o
p
s 

 
(C

C
M

) 

  

 

kpII Proportional coefficients of current 300 

krII Resonant coefficients of current 2500 

ωcII cut-off frequency of control loop 2 Hz 

kD Damping factor 300 

D
ro

o
p
 

C
o
n
tr

o
l 

kpP Active power droop term 0.0003 Ws/rad 

kiP Active power droop integral term 0.0015 Ws/rad 

kpQ Reactive power droop term 0.2 VAr/V 

S
ec

o
n
d
ar

y
 

C
o
n
tr

o
l 

kpf Frequency proportional term 0.001 

kif Frequency integral term 1 s-1 

kpE Voltage proportional term 0.001 

kiE Voltage integral term 0.5 s-1 



 

Fig. 8. Voltage of DG1, current of DG1, and current of DG2 of four-wire inverter during the ABCG fault.  

 

Fig. 9. Voltage of DG1, current of DG1, and current of DG2 of four-wire inverter during the ACG fault.  

One of the DGs operates in VCM and the others work in CCM. 
The parameters of this simulation system are presented in Table 
I. Different type of faults including ABCG (three-phase to 
ground), ACG, BC, and CG are examined to demonstrate the 
efficiency of the proposed method. In each case, the fault is 
placed across the load and it’s the fault resistance between each 
phase and phase to ground are considered to be 1Ω. As shown 

in Fig.8, when there is no FCL for the ABCG fault, the voltage 
drops to 0.31 p.u. and the IDG1 and IDG2  increase up to 4.9 p.u. 
and 2.362 p.u., respectively. However, by using the proposed 
FCL, voltage of DG1 decreases to 0.1851 p.u. to limit the fault 
current of DG1 to 2 p.u. in 25 ms. On the other hand, for the 
CCM-VSI the limiter on current reference limits the fault current 
to twice of nominal current, abruptly.   



 

Fig. 10. Voltage of DG1, current of DG1, and current of DG2 of four-wire inverter during the BC fault.  

 

Fig. 11. Voltage of DG1, current of DG1, and current of DG2 of four-wire inverter during the CG fault.  

In ACG the current of DG1 reach to around 4 times of its nominal 
value. The proposed FCL decreases only voltages of faulty 
phase of VC-VSI (A and C) by measuring the related currents. 
As it is shown in Fig.9, the current of DG1 is limited to 2 p.u. in 
27 ms. On the other hand, current reference limiter of CCM-
VSIs (DG2,DG3) confines the fault current, abruptly. 

As shown in Fig. 10, for BC fault, the current of faulted phase 
of DG1 reaches 4.67 p.u. With applying the proposed method, 
only voltage references of phase-B and C reduce to 0.4063 p.u. 
As a result, the current fixed to 2 p.u. in around 20 ms. On the 
other hand, the FCL of DG2 limit fault immediately. 



Finally, a CG fault is exerted in the load bus. It can be seen that 
the proposed method has the same performance but even faster 
in limiting fault. 

The summary of simulated results is presented in Table II. 

TABLE II.  Performance of the proposed method for four types of fault 

Fault 
type 

THDV 

(%) 
THDI 

(%) 
VDG1 IDG1 Response 

Time  

ABCG  1.37 0.83 0.185 p.u. 1.93 p.u. 25 ms 

ACG 2.30 1.21 0.33 p.u. 2.06 p.u. 27 ms 

BC 2.42 0.42 0.41 p.u. 2.06 p.u. 22 ms 

CG 0.33 0.44 0.24 p.u. 1.9 p.u. 18 ms 

 

IV. CONCLUSION 

In this paper, a new embedded FCL is designed to limit the 
current to twice of its nominal current for three-phase four wire 
inverter. The proposed method first measures each phase 
currents of DGs by the MSOGI, then based on the propose fault 
detection criterion, two different compensation references are 
transmitted to the primary control for normal and faulty 
conditions.  According to the obtained results for different type 
of faults, the advantages of the proposed FCL are summarized 
as follows: 

 Simplicity. 

 Fast response (maximum 20 ms) 

 Not inserting current/voltage harmonic during limiting 
current. 

 Removing the need for an external FCL device. 
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