70 research outputs found

    High-pressure lattice dynamics in wurtzite and rocksalt indium nitride investigated by means of Raman spectroscopy

    Get PDF
    We present an experimental and theoretical lattice-dynamical study of InN at high hydrostatic pressures. We perform Raman scattering measurements on five InN epilayers, with different residual strain and free electron concentrations. The experimental results are analyzed in terms of ab initio lattice-dynamical calculations on both wurtzite InN (w-InN) and rocksalt InN (rs-InN) as a function of pressure. Experimental and theoretical pressure coefficients of the optical modes in w-InN are compared, and the role of residual strain on the measured pressure coefficients is analyzed. In the case of the LO band, we analyze and discuss its pressure behavior considering the double-resonance mechanism responsible for the selective excitation of LO phonons with large wave vectors in w-InN. The pressure behavior of the L− coupled mode observed in a heavily doped n-type sample allows us to estimate the pressure dependence of the electron effective mass in w-InN. The results thus obtained are in good agreement with k⋅p theory. The wurtzite-to-rocksalt phase transition on the upstroke cycle and the rocksalt-to-wurtzite backtransition on the downstroke cycle are investigated, and the Raman spectra of both phases are interpreted in terms of DFT lattice-dynamical calculations. ©2013 American Physical SocietyWork was supported by the Spanish Ministerio de Economia y Competitividad through Projects MAT2010-16116, MAT2010-21270-C04-04 and MALTA Consolider Ingenio 2010 (CSD2007-00045).Ibánez, J.; Oliva, R.; Manjón Herrera, FJ.; Segura, A.; Yamaguchi, T.; Nanishi, Y.; Cuscó, R.... (2013). High-pressure lattice dynamics in wurtzite and rocksalt indium nitride investigated by means of Raman spectroscopy. Physical Review B. 88:115202-1-115202-13. https://doi.org/10.1103/PhysRevB.88.115202S115202-1115202-1388Wu, J. (2009). When group-III nitrides go infrared: New properties and perspectives. Journal of Applied Physics, 106(1), 011101. doi:10.1063/1.3155798Pinquier, C., Demangeot, F., Frandon, J., Pomeroy, J. W., Kuball, M., Hubel, H., … Gil, B. (2004). Raman scattering in hexagonal InN under high pressure. Physical Review B, 70(11). doi:10.1103/physrevb.70.113202Pinquier, C., Demangeot, F., Frandon, J., Chervin, J.-C., Polian, A., Couzinet, B., … Maleyre, B. (2006). Raman scattering study of wurtzite and rocksalt InN under high pressure. Physical Review B, 73(11). doi:10.1103/physrevb.73.115211Yao, L. D., Luo, S. D., Shen, X., You, S. J., Yang, L. X., Zhang, S. J., … Xie, S. S. (2010). Structural stability and Raman scattering of InN nanowires under high pressure. Journal of Materials Research, 25(12), 2330-2335. doi:10.1557/jmr.2010.0290Ibáñez, J., Manjón, F. J., Segura, A., Oliva, R., Cuscó, R., Vilaplana, R., … Artús, L. (2011). High-pressure Raman scattering in wurtzite indium nitride. Applied Physics Letters, 99(1), 011908. doi:10.1063/1.3609327Uehara, S., Masamoto, T., Onodera, A., Ueno, M., Shimomura, O., & Takemura, K. (1997). Equation of state of the rocksalt phase of III–V nitrides to 72 GPa or higher. Journal of Physics and Chemistry of Solids, 58(12), 2093-2099. doi:10.1016/s0022-3697(97)00150-9Duan, M.-Y., He, L., Xu, M., Xu, M.-Y., Xu, S., & Ostrikov, K. (Ken). (2010). Structural, electronic, and optical properties of wurtzite and rocksalt InN under pressure. Physical Review B, 81(3). doi:10.1103/physrevb.81.033102Davydov, V. Y., Klochikhin, A. A., Smirnov, A. N., Strashkova, I. Y., Krylov, A. S., Lu, H., … Gwo, S. (2009). Selective excitation ofE1(LO)andA1(LO)phonons with large wave vectors in the Raman spectra of hexagonal InN. Physical Review B, 80(8). doi:10.1103/physrevb.80.081204Cuscó, R., Ibáñez, J., Alarcón-Lladó, E., Artús, L., Yamaguchi, T., & Nanishi, Y. (2009). Raman scattering study of the long-wavelength longitudinal-optical-phonon–plasmon coupled modes in high-mobility InN layers. Physical Review B, 79(15). doi:10.1103/physrevb.79.155210Ernst, S., Goñi, A. R., Syassen, K., & Cardona, M. (1995). LO-Phonon-plasmon modes in n-GaAs and n-InP under pressure. Journal of Physics and Chemistry of Solids, 56(3-4), 567-570. doi:10.1016/0022-3697(94)00242-8Ernst, S., Goñi, A. R., Syassen, K., & Cardona, M. (1996). Plasmon Raman scattering and photoluminescence of heavily dopedn-type InP near the Γ-X crossover. Physical Review B, 53(3), 1287-1293. doi:10.1103/physrevb.53.1287Lin, Y. C., Chiu, C. H., Fan, W. C., Chia, C. H., Yang, S. L., Chuu, D. S., … Chou, W. C. (2007). Raman scattering of longitudinal-optical-phonon-plasmon coupling in Cl-doped ZnSe under high pressure. Journal of Applied Physics, 102(12), 123510. doi:10.1063/1.2826936Gonze, X., Beuken, J.-M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G.-M., … Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software project. Computational Materials Science, 25(3), 478-492. doi:10.1016/s0927-0256(02)00325-7Goedecker, S., Teter, M., & Hutter, J. (1996). Separable dual-space Gaussian pseudopotentials. Physical Review B, 54(3), 1703-1710. doi:10.1103/physrevb.54.1703Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993-2006. doi:10.1103/physrevb.43.1993Wu, M. F., Zhou, S. Q., Vantomme, A., Huang, Y., Wang, H., & Yang, H. (2006). High-precision determination of lattice constants and structural characterization of InN thin films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 24(2), 275-279. doi:10.1116/1.2167970Ueno, M., Yoshida, M., Onodera, A., Shimomura, O., & Takemura, K. (1994). Stability of the wurtzite-type structure under high pressure: GaN and InN. Physical Review B, 49(1), 14-21. doi:10.1103/physrevb.49.14Serrano, J., Bosak, A., Krisch, M., Manjón, F. J., Romero, A. H., Garro, N., … Kuball, M. (2011). InN Thin Film Lattice Dynamics by Grazing Incidence Inelastic X-Ray Scattering. Physical Review Letters, 106(20). doi:10.1103/physrevlett.106.205501Giannozzi, P., de Gironcoli, S., Pavone, P., & Baroni, S. (1991). Ab initiocalculation of phonon dispersions in semiconductors. Physical Review B, 43(9), 7231-7242. doi:10.1103/physrevb.43.7231Gonze, X., & Lee, C. (1997). Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Physical Review B, 55(16), 10355-10368. doi:10.1103/physrevb.55.10355Weinstein, B. A. (1977). Phonon dispersion of zinc chalcogenides under extreme pressure and the metallic transformation. Solid State Communications, 24(9), 595-598. doi:10.1016/0038-1098(77)90369-6Yakovenko, E. V., Gauthier, M., & Polian, A. (2004). High-pressure behavior of the bond-bending mode of AIN. Journal of Experimental and Theoretical Physics, 98(5), 981-985. doi:10.1134/1.1767565Ibáñez, J., Segura, A., García-Domene, B., Oliva, R., Manjón, F. J., Yamaguchi, T., … Artús, L. (2012). High-pressure optical absorption in InN: Electron density dependence in the wurtzite phase and reevaluation of the indirect band gap of rocksalt InN. Physical Review B, 86(3). doi:10.1103/physrevb.86.035210Serrano, J., Romero, A. H., Manjón, F. J., Lauck, R., Cardona, M., & Rubio, A. (2004). Pressure dependence of the lattice dynamics of ZnO: Anab initioapproach. Physical Review B, 69(9). doi:10.1103/physrevb.69.094306Cuscó, R., Ibáñez, J., Domenech-Amador, N., Artús, L., Zúñiga-Pérez, J., & Muñoz-Sanjosé, V. (2010). Raman scattering of cadmium oxide epilayers grown by metal-organic vapor phase epitaxy. Journal of Applied Physics, 107(6), 063519. doi:10.1063/1.3357377Cuscó, R., Alarcón-Lladó, E., Ibáñez, J., Yamaguchi, T., Nanishi, Y., & Artús, L. (2009). Raman scattering study of background electron density in InN: a hydrodynamical approach to the LO-phonon–plasmon coupled modes. Journal of Physics: Condensed Matter, 21(41), 415801. doi:10.1088/0953-8984/21/41/415801Cuscó, R., Ibáñez, J., Alarcón-Lladó, E., Artús, L., Yamaguchi, T., & Nanishi, Y. (2009). Photoexcited carriers and surface recombination velocity in InN epilayers: A Raman scattering study. Physical Review B, 80(15). doi:10.1103/physrevb.80.155204Wang, X., Che, S.-B., Ishitani, Y., & Yoshikawa, A. (2006). Experimental determination of strain-free Raman frequencies and deformation potentials for the E2 high and A1(LO) modes in hexagonal InN. Applied Physics Letters, 89(17), 171907. doi:10.1063/1.2364884Perlin, P., Jauberthie-Carillon, C., Itie, J. P., San Miguel, A., Grzegory, I., & Polian, A. (1992). Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Physical Review B, 45(1), 83-89. doi:10.1103/physrevb.45.83Perlin, P., Suski, T., Ager, J. W., Conti, G., Polian, A., Christensen, N. E., … Haller, E. E. (1999). Transverse effective charge and its pressure dependence in GaN single crystals. Physical Review B, 60(3), 1480-1483. doi:10.1103/physrevb.60.1480Halsall, M. P., Harmer, P., Parbrook, P. J., & Henley, S. J. (2004). Raman scattering and absorption study of the high-pressure wurtzite to rocksalt phase transition of GaN. Physical Review B, 69(23). doi:10.1103/physrevb.69.235207Goñi, A. R., Siegle, H., Syassen, K., Thomsen, C., & Wagner, J.-M. (2001). Effect of pressure on optical phonon modes and transverse effective charges inGaNandAlN. Physical Review B, 64(3). doi:10.1103/physrevb.64.035205Watson, G. H., Daniels, W. B., & Wang, C. S. (1981). Measurements of Raman intensities and pressure dependence of phonon frequencies in sapphire. Journal of Applied Physics, 52(2), 956-958. doi:10.1063/1.328785Manjón, F. J., Errandonea, D., Romero, A. H., Garro, N., Serrano, J., & Kuball, M. (2008). Lattice dynamics of wurtzite and rocksalt AlN under high pressure: Effect of compression on the crystal anisotropy of wurtzite-type semiconductors. Physical Review B, 77(20). doi:10.1103/physrevb.77.205204Domènech-Amador, N., Cuscó, R., Artús, L., Stoica, T., & Calarco, R. (2012). Longer InN phonon lifetimes in nanowires. Nanotechnology, 23(8), 085702. doi:10.1088/0957-4484/23/8/085702Gorczyca, I., Plesiewicz, J., Dmowski, L., Suski, T., Christensen, N. E., Svane, A., … Speck, J. S. (2008). Electronic structure and effective masses of InN under pressure. Journal of Applied Physics, 104(1), 013704. doi:10.1063/1.2953094Cardona, M., & Güntherodt, G. (Eds.). (1984). Light Scattering in Solids IV. Topics in Applied Physics. doi:10.1007/3-540-11942-6Artús, L., Cuscó, R., Ibáñez, J., Blanco, N., & González-Díaz, G. (1999). Raman scattering by LO phonon-plasmon coupled modes inn-type InP. Physical Review B, 60(8), 5456-5463. doi:10.1103/physrevb.60.5456Ib��ez, J., Cusc�, R., & Art�s, L. (2001). Raman Scattering Determination of Free Charge Density Using a Modified Hydrodynamical Model. physica status solidi (b), 223(3), 715-722. doi:10.1002/1521-3951(200102)223:33.0.co;2-oKasic, A., Schubert, M., Saito, Y., Nanishi, Y., & Wagner, G. (2002). Effective electron mass and phonon modes inn-type hexagonal InN. Physical Review B, 65(11). doi:10.1103/physrevb.65.115206Demangeot, F., Pinquier, C., Frandon, J., Gaio, M., Briot, O., Maleyre, B., … Gil, B. (2005). Raman scattering by the longitudinal optical phonon in InN: Wave-vector nonconserving mechanisms. Physical Review B, 71(10). doi:10.1103/physrevb.71.104305Thakur, J. S., Haddad, D., Naik, V. M., Naik, R., Auner, G. W., Lu, H., & Schaff, W. J. (2005). A1(LO)phonon structure in degenerate InN semiconductor films. Physical Review B, 71(11). doi:10.1103/physrevb.71.115203Inushima, T., Higashiwaki, M., & Matsui, T. (2003). Optical properties of Si-doped InN grown on sapphire (0001). Physical Review B, 68(23). doi:10.1103/physrevb.68.235204Kasic, A., Valcheva, E., Monemar, B., Lu, H., & Schaff, W. J. (2004). InNdielectric function from the midinfrared to the ultraviolet range. Physical Review B, 70(11). doi:10.1103/physrevb.70.115217Wu, J., Walukiewicz, W., Shan, W., Yu, K. M., Ager, J. W., Haller, E. E., … Schaff, W. J. (2002). Effects of the narrow band gap on the properties of InN. Physical Review B, 66(20). doi:10.1103/physrevb.66.201403Kim, J. G., Kamei, Y., Hasuike, N., Harima, H., Kisoda, K., Sasamoto, K., & Yamamoto, A. (2010). Effective mass of InN estimated by Raman scattering. physica status solidi (c), 7(7-8), 1887-1889. doi:10.1002/pssc.200983567Christensen, N. E., & Gorczyca, I. (1994). Optical and structural properties of III-V nitrides under pressure. Physical Review B, 50(7), 4397-4415. doi:10.1103/physrevb.50.4397Ovsyannikov, S. V., Shchennikov, V. V., Karkin, A. E., Polian, A., Briot, O., Ruffenach, S., … Moret, M. (2010). Pressure cycling of InN to 20 GPa: In situ transport properties and amorphization. Applied Physics Letters, 97(3), 032105. doi:10.1063/1.3466913Davydov, V. Y., Klochikhin, A. A., Smirnov, M. B., Emtsev, V. V., Petrikov, V. D., Abroyan, I. A., … Inushima, T. (1999). Phonons in Hexagonal InN. Experiment and Theory. physica status solidi (b), 216(1), 779-783. doi:10.1002/(sici)1521-3951(199911)216:13.0.co;2-

    A Novel Intragenic Duplication in the HDAC8 Gene Underlying a Case of Cornelia de Lange Syndrome

    Get PDF
    Cornelia de Lange syndrome (CdLS) is a multisystemic genetic disorder characterized by distinctive facial features, growth retardation, and intellectual disability, as well as various systemic conditions. It is caused by genetic variants in genes related to the cohesin complex. Single-nucleotide variations are the best-known genetic cause of CdLS; however, copy number variants (CNVs) clearly underlie a substantial proportion of cases of the syndrome. The NIPBL gene was thought to be the locus within which clinically relevant CNVs contributed to CdLS. However, in the last few years, pathogenic CNVs have been identified in other genes such as HDAC8, RAD21, and SMC1A. Here, we studied an affected girl presenting with a classic CdLS phenotype heterozygous for a de novo ~32 kbp intragenic duplication affecting exon 10 of HDAC8. Molecular analyses revealed an alteration in the physiological splicing that included a 96 bp insertion between exons 9 and 10 of the main transcript of HDAC8. The aberrant transcript was predicted to generate a truncated protein whose accessibility to the active center was restricted, showing reduced ease of substrate entry into the mutated enzyme. Lastly, we conclude that the duplication is responsible for the patient’s phenotype, highlighting the contribution of CNVs as a molecular cause underlying CdLS

    Multi-smart and scalable bioligands-free nanomedical platform for intratumorally targeted tambjamine delivery, a difficult to administrate highly cytotoxic drug

    Get PDF
    Cancer is one of the leading causes of mortality worldwide due, in part, to limited success of some current therapeutic approaches. The clinical potential of many promising drugs is restricted by their systemic toxicity and lack of selectivity towards cancer cells, leading to insufficient drug concentration at the tumor site. To overcome these hurdles, we developed a novel drug delivery system based on polyurea/polyurethane nanocapsules (NCs) showing pH-synchronized amphoteric properties that facilitate their accumulation and selectivity into acidic tissues, such as tumor microenvironment. We have demonstrated that the anticancer drug used in this study, a hydrophobic anionophore named T21, increases its cytotoxic activity in acidic conditions when nanoencapsulated, which correlates with a more efficient cellular internalization. A biodistribution assay performed in mice has shown that the NCs are able to reach the tumor and the observed systemic toxicity of the free drug is significantly reduced in vivo when nanoencapsulated. Additionally, T21 antitumor activity is preserved, accompanied by tumor mass reduction compared to control mice. Altogether, this work shows these NCs as a potential drug delivery system able to reach the tumor microenvironment, reducing the undesired systemic toxic effects. Moreover, these nanosystems are prepared under scalable methodologies and straightforward process, and provide tumor selectivity through a smart mechanism independent of targeting ligands

    Individual signatures and environmental factors shape skin microbiota in healthy dogs

    Get PDF
    The individual, together with its environment, has been reported as the main force driving composition and structure of skin microbiota in healthy dogs. Therefore, one of the major concerns when analyzing canine skin microbiota is the likely influence of the environment. Despite the dense fur covering, certain skin diseases exhibit differential prevalence among skin sites, dog breeds, and individuals. We have characterized the normal variability of dog skin microbiota in a well-controlled cohort of a large number of Golden-Labrador Retriever crossed dogs (N = 35) with similar ages, related genetic background, and a shared environment. We found that the individual drives the skin microbiota composition and structure followed by the skin site. The main bacterial classes inhabiting dog skin in this cohort are Gammaproteobacteria and Bacilli. We also detected bacteria associated to the environment on different dog skin sites that could be reflecting the different degrees of exposure of each skin site and each dog. Network analyses elucidated bacterial interactions within and between skin sites, especially in the chin, abdomen, axilla, and perianal region, with the highly shared interactions probably representing an anatomical, behavioral, or environmental component. When analyzing each skin site independently to assess host-specific factors, we found that temporality (season of birth and time spent in the kennel) affected all the skin sites and specially the inner pinna. The most abundant taxon driving this difference was Sphingomonas. We also found taxonomic differences among male and female dogs on the abdomen, axilla, and back. We observed a large inter-individual variability and differences among skin sites. Host-specific variables, such as temporality or sex, were also shaping skin microbiota of healthy dogs, even in an environmental homogenous cohort. The online version of this article (10.1186/s40168-017-0355-6) contains supplementary material, which is available to authorized users

    Can current farmland landscapes feed declining steppe birds? Evaluating arthropod abundance for the endangered little bustard (Tetrax tetrax) in cereal farmland during the chick-rearing period: Variations between habitats and localities

    Full text link
    Agriculture intensification threatens farmland bird populations because, among other reasons, it reduces the availability of food resources required to rear their offspring. In our study, we sampled and analyzed total arthropod abundance, biomass and richness, and orthopteran and coleopteran abundance and biomass in different agricultural habitats (alfalfa fields, stubble fields, grazed fields, and field margins) across 4 study localities with different levels of agriculture abandonment–intensification, comparing between areas used and not used by one of the most threatened farmland birds in Europe, the little bustard (Tetrax tetrax), during the chick-rearing season. Field margins were the taxonomically richest habitat, while alfalfa fields presented significantly higher total arthropod abundance and biomass than other habitats. All arthropod variables were the highest in the localities with clear conservation-focused agrarian management, and the lowest in the most intensive one. Areas used by little bustards had higher orthopteran and coleopteran abundance and biomass than nonused areas, except for coleopteran biomass in grazed fields. These results highlight the relevance of these arthropods for the species, the importance of dry alfalfa fields as food reservoirs in this critical time of year, the food scarcity in sites where agrarian management disregards farmland bird conservation, and the role of stubbles as providers of food resources during the chick-rearing season in areas used by the species. The adequate management of alfalfa fields and stubbles to provide those key resources seems crucial to improve little bustard breeding success.We thank the International Fund for Houbara Conservation (IFHC) and Fundación Patrimonio Natural (FPN) de Castilla y León in the persons of Cédric Ferlat (IFHC), David Cubero (Dirección General de Medio Natural, Junta de CyL), and Francisco Jiménez (FPN) for their financial, administrative, and logistic support. This paper also contributes to project S2018/EMT-4338 REMEDINAL TE-CM from Comunidad de Madrid. We are also thankful to the officers responsible for the Reserve of Villafáfila, Mariano Rodíguez y Jesús Palacios. Little bustard spring survey data were kindly provided by SEO-BirdLife.Peer reviewe

    New Population and Phylogenetic Features of the Internal Variation within Mitochondrial DNA Macro-Haplogroup R0

    Get PDF
    BACKGROUND: R0 embraces the most common mitochondrial DNA (mtDNA) lineage in West Eurasia, namely, haplogroup H (approximately 40%). R0 sub-lineages are badly defined in the control region and therefore, the analysis of diagnostic coding region polymorphisms is needed in order to gain resolution in population and medical studies. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the first hypervariable segment (HVS-I) of 518 individuals from different North Iberian regions. The mtDNAs belonging to R0 (approximately 57%) were further genotyped for a set of 71 coding region SNPs characterizing major and minor branches of R0. We found that the North Iberian Peninsula shows moderate levels of population stratification; for instance, haplogroup V reaches the highest frequency in Cantabria (north-central Iberia), but lower in Galicia (northwest Iberia) and Catalonia (northeast Iberia). When compared to other European and Middle East populations, haplogroups H1, H3 and H5a show frequency peaks in the Franco-Cantabrian region, declining from West towards the East and South Europe. In addition, we have characterized, by way of complete genome sequencing, a new autochthonous clade of haplogroup H in the Basque country, named H2a5. Its coalescence age, 15.6+/-8 thousand years ago (kya), dates to the period immediately after the Last Glacial Maximum (LGM). CONCLUSIONS/SIGNIFICANCE: In contrast to other H lineages that experienced re-expansion outside the Franco-Cantabrian refuge after the LGM (e.g. H1 and H3), H2a5 most likely remained confined to this area till present days

    Elucidating the clinical and molecular spectrum of SMARCC2-associated NDD in a cohort of 65 affected individuals

    Get PDF
    Purpose: Coffin-Siris and Nicolaides-Baraitser syndromes are recognizable neurodevelopmental disorders caused by germline variants in BAF complex subunits. The SMARCC2 BAFopathy was recently reported. Herein, we present clinical and molecular data on a large cohort. Methods: Clinical symptoms for 41 novel and 24 previously published affected individuals were analyzed using the Human Phenotype Ontology. For genotype-phenotype correlations, molecular data were standardized and grouped into non-truncating and likely gene-disrupting (LGD) variants. Missense variant protein expression and BAF-subunit interactions were examined using 3D protein modeling, co-immunoprecipitation, and proximity-ligation assays. Results: Neurodevelopmental delay with intellectual disability, muscular hypotonia, and behavioral disorders were the major manifestations. Clinical hallmarks of BAFopathies were rare. Clinical presentation differed significantly, with LGD variants being predominantly inherited and associated with mildly reduced or normal cognitive development, whereas non-truncating variants were mostly de novo and presented with severe developmental delay. These distinct manifestations and non-truncating variant clustering in functional domains suggest different pathomechanisms. In vitro testing showed decreased protein expression for N-terminal missense variants similar to LGD. Conclusion: This study improved SMARCC2 variant classification and identified discernible SMARCC2-associated phenotypes for LGD and non-truncating variants, which were distinct from other BAFopathies. The pathomechanism of most non-truncating variants has yet to be investigated
    corecore