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Abstract

Background: The individual, together with its environment, has been reported as the main force driving composition
and structure of skin microbiota in healthy dogs. Therefore, one of the major concerns when analyzing canine skin
microbiota is the likely influence of the environment. Despite the dense fur covering, certain skin diseases exhibit
differential prevalence among skin sites, dog breeds, and individuals.

Results: We have characterized the normal variability of dog skin microbiota in a well-controlled cohort of a large
number of Golden-Labrador Retriever crossed dogs (N = 35) with similar ages, related genetic background, and a
shared environment. We found that the individual drives the skin microbiota composition and structure followed
by the skin site. The main bacterial classes inhabiting dog skin in this cohort are Gammaproteobacteria and
Bacilli. We also detected bacteria associated to the environment on different dog skin sites that could be
reflecting the different degrees of exposure of each skin site and each dog. Network analyses elucidated bacterial
interactions within and between skin sites, especially in the chin, abdomen, axilla, and perianal region, with the
highly shared interactions probably representing an anatomical, behavioral, or environmental component. When
analyzing each skin site independently to assess host-specific factors, we found that temporality (season of birth
and time spent in the kennel) affected all the skin sites and specially the inner pinna. The most abundant taxon
driving this difference was Sphingomonas. We also found taxonomic differences among male and female dogs on
the abdomen, axilla, and back.

Conclusions: We observed a large inter-individual variability and differences among skin sites. Host-specific variables, such
as temporality or sex, were also shaping skin microbiota of healthy dogs, even in an environmental homogenous cohort.
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Background
Skin is a complex ecosystem inhabited by a high diver-
sity of microorganisms, collectively referred to as the
microbiota. These microbial communities not only
inhabit, but also interact with the host cells impacting
cellular function and immunity; likewise, the host im-
munity can influence the microbiota composition. This
cross-talk between the host cells and the microorgan-
isms maintains the homeostasis and the healthy status of

an individual, and its disruption has been associated to
disease [1–3].
The dense fur that covers almost all of a dog’s skin

creates a homogenous microenvironment. However,
some skin diseases show a preference for certain skin
sites and for specific breeds [4]. Previous studies have
described skin microbiota in healthy dogs [5–10], but
only three of them included several skin sites to assess
differences that may exist due to the anatomical location
sampled [7, 9, 10]. Results from Rodrigues-Hoffmann
and colleagues showed that haired skin regions pre-
sented higher diversity values than mucosal areas and
mucocutaneous junctions [7], and a similar result was
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reported when comparing the inner pinna (hairy skin) to
the perianal region (mucocutaneous junction) [9]. No
differences among skin sites were detected when includ-
ing microbiota samples from the dorsal neck, axilla, and
abdomen [10].
Dog skin microbiota studies aimed at detecting differ-

ences between health and disease status have already
been performed for canine atopic dermatitis [7, 8, 11].
Skin affected with atopic dermatitis in dogs presented a
less diverse microbiota [7, 8] and increased proportions
of Staphylococcus and Corynebacterium [8]. Moreover,
dogs with allergen-induced atopic dermatitis presented
higher proportions of Staphylococcus on the challenged
site compared to the contralateral site [11].
In humans, skin microbiota differs among skin sites

and among individuals [12]. On the one hand, the skin
presents three main microhabitats depending on the
physicochemical properties: sebaceous sites, mainly
inhabited with Propionibacterium spp.; moist sites, with
Staphyloccocus and Corynebacterium spp.; and dry sites,
with gram-negative microorganisms [12, 13]. On the
other hand, individual signatures of the skin microbiota
are usually driven by low abundant species [14]. Follow-
ing those first human studies describing skin microbiota,
research then targeted key variables to ascertain if they
drove skin microbiota structure and composition in the
healthy individual. Variables assessed and found to have
some effect on microbiota diversity, composition, and
structure included those related to host such as sex [15–17],
age [18–20] and racial origin [21–23] or related to environ-
ment such as birth delivery mode [24], hygiene [15, 23],
cohabitation [6, 25], geography [22, 26, 27], and urbanization
[20, 28, 29].
One of the major concerns when performing skin

microbiota studies on dogs is the likely influence of the
environment [30]. Our previous results suggest that the
individual—together with its environment—was the
main force driving skin microbiota composition and
structure in a population of dogs from three different
breeds and hair coats [9]. Rodrigues-Hoffmann and
colleagues assessed some environmental variables, such
as presence of fleas, time spent indoors vs outdoors, sex,
or age, and did not detect significant associations
between the microbiota and a particular environmental
factor [7]. However, the dog cohort assessed was very
variable and included 12 individuals from different
breeds, ages, and households and likely obscured
environmental effects. Two studies reported that dogs
cohabiting together shared more skin microbiota [6, 10].
On the other hand, a recent longitudinal study using a
cohort of 40 healthy dogs sampled in three skin sites
assessed the effects of age, sex, breed, hair type, skin site,
temporal point of collection, and cohabitation. They
found that samples from different skin sites were more

similar within the same dog and that microbiota structure
was stratified by the temporal point of collection [10].
Skin microbiota has been suggested as a potential clin-

ical tool in susceptibility, diagnosis, and treatment of
dermatological diseases [31]. Characterizing the variabil-
ity of skin microbiota in healthy dogs and determining
which host and environmental variables are defining its
structure and composition will extend the background
to better design studies aimed to assess the altered skin
microbiota in disease.
Here, we aimed to assess the variability of the canine

skin microbiota in a homogeneous cohort of healthy
dogs. We analyzed eight different skin sites in Golden-
Labrador Retriever crossbred dogs (N = 35). The dogs
were cohabiting together in the same kennel and sharing
the same environmental conditions for at least 2.5 months.
As most of the environmental variables were fixed, we also
aimed to elucidate if any of the host factors were driving
skin microbiota structure and composition in some skin
sites. Finally, we compared the USA cohort with dogs
from a European cohort.

Methods
Cohort description and dogs included
The USA cohort was composed of 35 Golden-Labrador
Retriever crossed dogs, which were part of a larger
service dog program. We sampled 20 females (14 yellow
and 6 black) and 15 males (9 yellow and 6 black).
Additional files 1 and 2 contain all the metadata associ-
ated with the dogs.
They were healthy companion dogs born in different

households from breeding dogs that are also part of the
program, where they were raised until 8 weeks of age at
which time they were sent to individual puppy raisers
until a minimum of 17 months of age. Dogs of similar
ages then enter the kennel for training. In our cohort, 3
dogs born from January to February 2014 entered the
kennel in August 2015, 13 dogs born from March to
May 2014 entered in November 2015, and 19 dogs born
from June to September 2014 entered in February 2016.
The ages of the dogs at the time of sampling (April
2016) ranged from 19.5 to 27 months. Thus, these dogs
had been living and playing together in a shared envir-
onment in the same kennel in Santa Rosa (California)
for at least 2.5 months. Moreover, all dogs were fed a
base diet from the same manufacturer (Eukanuba), with
puppy and adult large breed diet fed at their different
age stages. The water used for bathing, drinking, and
cleaning the facilities comes from the municipal water
system. The staff maintaining the kennel and feeding the
animals were consistent the entire time the dogs were in
the kennel.
Besides the shared environment, in most cases, the

dogs had a shared genetic background: 33 out of 35 dogs
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sampled had at least one-half sibling or littermate in the
study and only dogs 31, 19, and 14 were born from a
unique set of progenitors (Additional file 1).
We analyzed the data obtained by “Individual” (35

dogs) and by “Site” (8 skin sites). We also analyzed the
effect of host-specific variables. For each skin site, we
grouped and analyzed the samples considering sex, coat
color, and temporality. Temporality is a variable that we
created to group dogs that were born in the same
calendar season and that had spent a similar amount of
time in the kennel. Thus, group T1 included 16 dogs
born in winter-spring, from January to May (older),
which have been living together in the kennel for at
least 5.5 months (8.5 months for 3 of the dogs), and
group T2 included 19 dogs born in summer from June
to September (younger), which have been living in the
kennel for 2.5 months at the time of sampling.
Dogs from the European cohort included 11 pets of

different ages, households, and breeds (Beagle, French
Bulldog, German Shepherd, and West Highland white
terrier). They were all purebred dogs ranging from
3 months to 12 years of age. Nine of the dogs were
described in a previous study [9], whereas two of them
were sampled later (unpublished). These samples were
processed in different batches along 18 months.

European and US samples were extracted in differ-
ent years and in different facilities. One person was
present in both DNA extraction procedures (AC).
The samples were obtained with the same swabs, and
the DNA was extracted with the same kit and proto-
col. PCRs were performed by the same person in the
same facilities (AC), and sequencing was performed
with the same equipment. To compare cohorts, all
samples were analyzed together following the steps
detailed below.

Sample collection
Skin microbiota samples were collected from eight
regions taken from the right side of the dog: inner pinna,
chin, nasal skin, back, axilla, abdomen, interdigital area,
and perianal region. These regions are named as A, B, C,
D, E, F, G, and H, respectively (Fig. 1a). Samples were
obtained by firmly rubbing each area using Sterile
Catch-All™ Sample Collection Swabs (Epicentre Biotech-
nologies, Madison, WI) soaked in sterile SCF-1 solution
(50 mM Tris buffer (pH = 8), 1 mM EDTA, and 0.5%
Tween-20). To minimize sample cross-contamination,
the person sampling wore a fresh pair of sterile gloves
for each individual. To minimize bias in sampling, only
AO and AC sampled the dogs. The swabs were stored at

Fig. 1 a Skin sites sampled and b taxonomic composition per skin site at phylum level
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4 °C until DNA extraction, within the following 8 days
(3 days, 2-day stop, 3 days).

DNA extraction
Bacterial DNA was extracted from the swabs using the
PowerSoil™ DNA isolation kit (MO BIO laboratories,
Carlsbad, CA) under manufacturer’s conditions, with
one modification. At the first lysis step, the swab tip with
the sponge was cut and placed in the bead tube, until
the first transference of the supernatant to a new tube.
The remaining steps were performed as described by the
manufacturer in exception of the elution step, which was
performed on 50 μL of C6 instead of 100 μL to obtain a
higher concentration. Samples from different skin sites
and individuals were randomly extracted to avoid
confounding a batch effect with an actual effect. DNA
extractions were performed within the following 8 days
in random batches of samples to avoid confounding
technical biases with actual ones. DNA samples (50 μl)
were stored at − 20 °C until further processing. To assess
for contamination from the laboratory or reagents, two
blank samples were processed: one with a sterile swab
tip and the other without the sterile swab tip.

PCR amplification and massive sequencing
V1–V2 regions of 16S rRNA gene were amplified using
the widely used primer pair F27 (5′-AGAGTTT-
GATCCTGGCTCAG-3′) and R338 (5′-TGCTGCCTCC
CGTAGGAGT-3′), which targets 311 bp in E. coli gen-
ome. We choose V1–V2 hypervariable regions because
they had been suggested to be a better choice for human
skin microbiota among others [32]. PCR mixture (25 μl)
contained 2 μl of DNA template, 5 μl of 5× Phusion®
High Fidelity Buffer, 2.5 μl of dNTPs (2 mM), 0.2 μM of
each primer, and 0.5 U of Phusion® Hot Start II Taq
Polymerase (Thermo Scientific, Vilnius, Lithuania).
The PCR thermal profile consisted of an initial

denaturation of 30 s at 98 °C, followed by 30 cycles of
15 s at 98 °C, 15 s at 55 °C, 20 s at 72 °C, and a final step
of 7 min at 72 °C. Samples that did not amplify the first
time were repeated increasing cycles to 33. To assess
possible reagent contamination, each PCR reaction
included a no template control (NTC) sample.
For each amplicon, quality and quantity were assessed

using Agilent Bioanalyzer 2100 (Agilent, Santa Clara,
CA) and Qubit™ fluorometer (Life Technologies,
Carlsbad, CA), respectively. Both primers included se-
quencing adaptors at the 5′ end and forward primers
were tagged with different barcodes to pool samples in
the same sequencing reaction, which results in a 415 bp
fragment.
Each sequencing pool included 40 barcoded samples

that were sequenced on an Ion Torrent Personal
Genome Machine (PGM) with the Ion 318 Chip Kit v2

and the Ion PGM™ Sequencing 400 Kit (Life Technolo-
gies, Carlsbad, CA) under manufacturer’s conditions.

Quality control of the sequences and OTU picking
Raw sequencing reads were demultiplexed and quality-
filtered using QIIME 1.9.1 [33]. Reads included pre-
sented a length greater than 300 bp, a mean quality
score above 25 in sliding window of 50 nucleotides, no
mismatches on the primer, and default values for other
quality parameters. After that, quality-filtered reads were
processed using vsearch v1.1 pipeline [34]: a first de-
replication step was applied, followed by clustering into
operational taxonomic units (OTUs) at 97% similarity
with a de novo approach and finally chimera checking
was performed using UCHIME [35] de novo. The raw
OTU table was transferred into QIIME 1.9.1, and
taxonomic assignment of representative OTUs was
performed using the Ribosomal Database Project (RDP)
Classifier [36] against Greengenes v13.8 database [37].
Alignment of sequences was performed using PyNast
[38]. We sequentially applied extra filtering steps in
aligned and taxonomy-assigned OTU table to filter out
(1) sequences that belonged to chloroplast class, (2)
sequences representing less than 0.005% of total OTUs
(as previously done in [39]), (3) sequences that belonged
to Shewanellaceae and Halomonadaceae families, which
were highly represented in the NTC of the repetition
chip (performed with an increased cycle number) and
considered contamination from the reagents.
Samples 17G and 27A did not amplify and they could

not be sequenced. We performed downstream analysis
at a depth of 11,000 sequences per sample: 1D, 30C, 6G,
and 8G failed this parameter and were discarded for
posterior analyses. Also, NTC and Blank with a swab tip
presented some amplification but failed to reach 11,000
sequences per sample; blank without the swab tip could
not amplify.

Downstream bioinformatics analyses
Downstream analyses were performed using QIIME
1.9.1 [33] with the filtered OTU table. To standardize
samples with unequal sequencing depths, analyses were
performed using random subsets of 11,000 sequences
per sample.
Alpha diversity analysis assesses the diversity within a

sample. Two different metrics were used for the alpha
diversity: observed species to assess richness and
Shannon index to assess evenness. Data were tested for
normality by the Shapiro-Wilk test implemented in R.
As the values were not following a normal distribution,
we assessed statistical significant differences in alpha
diversity values among groups with 999 permutations
using the non-parametric Monte Carlo permutation test
and corrected the p value through false discovery rate.
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Beta diversity analysis assesses the similarities among sam-
ples of the same community. Beta diversity was performed
using both weighted and unweighted UniFrac distance
metrics [40]. Weighted UniFrac considers phylogeny, taxa,
and relative abundances, whereas unweighted UniFrac
only considers phylogeny and taxa. Those distance matri-
ces were used to create PCoA plots. ANOSIM and adonis
statistical methods were applied to evaluate the extent of a
variable effect on the dissimilarity of microbial communities.
Linear discriminant analysis (LDA) effect size (LEfSe)

[41] was used to compare groups and to identify taxa
whose abundance is differentially abundant between
groups (α = 0.05 and with an LDA score > 3.0).
CoNet [42], which is implemented as an application in

Cytoscape [43], was applied to infer networks among
skin sites using bacterial families that presented a
median relative abundance higher than 0.05% in each
specific site. In CoNet, we used five different algorithms
(Pearson’s correlation, Spearman’s correlation, Kullback-
Leibler dissimilarity distances, Bray-Curtis dissimilarity
distances and mutual information similarity) since the
combination of their results allows the appropriateness
of scoring measures to sparse count data and determin-
ation of statistical significance, as stated by the authors
[44]. The results of the five methods were merged using
Simes p value. We performed a first permutation step,
followed by a bootstrap analysis corrected for false
discovery rate (α = 0.05).

Results
We analyzed the variability of the canine skin microbiota
in eight different skin sites from a healthy homogenous
and well-controlled cohort of Golden-Labrador Retriever
crossbred dogs cohabiting together in the same kennel
in the USA (N = 35) (see Additional files 1 and 2 for
the associated metadata). At the time of sampling,
dogs ranged in age from 19.5 to 27 months old and
had been living and playing together in a shared en-
vironment for at least 2.5 months. All dogs were fed
a base diet from the same manufacturer in their dif-
ferent age stages and shared the municipal water used
for bathing, drinking, and cleaning the facilities. The
staff maintaining the kennel and feeding the animals
were consistent over the entire stay of these dogs in
the kennel.
We sampled microbiota from eight skin sites: inner

pinna, chin, nasal skin, dorsal back, axilla, abdomen,
interdigital region, and perianal area, which are respect-
ively named as A, B, C, D, E, F, G, and H (Fig. 1a). These
anatomic sites were selected to represent the regional
diversity of the canine skin [4]. Samples 17G, 27A, 1D,
30C, 6G, and 8G failed at some processing point and
were discarded for posterior analyses (see the “Methods”
section for more detail).

Individual and skin sites: taxonomy and diversity analysis
We found a total of 2216 bacterial OTUs living on dog
skin (Additional file 3) that were taxonomically classified
into 17 phyla, 41 classes, 62 orders, 128 families, and
242 genera. Specifically, the main phyla inhabiting dog
skin of healthy dogs were Proteobacteria, Firmicutes,
Bacteroidetes, Actinobacteria, Cyanobacteria, and
Fusobacteria followed by TM7, Tenericutes, and others
with lower abundances (Fig. 1b).
Proteobacteria was usually the main phylum found on

the skin of our cohort (Fig. 1b and Additional file 4).
Fusobacteria were most frequently found in the perianal
regions; however, when Fusobacteria colonized the haired
skin, the distribution was individual-specific. That is, there
were a few dogs with high abundance of Fusobacteria in
several regions whereas other dogs had almost no Fusobac-
teria. Within the Fusobacteria enriched individuals, usually
the highest percentages were found in the abdomen sam-
ples. Finally, Cyanobacteria phylum was mainly present
with high abundances in the abdomen, interdigital region,
and the chin of specific individuals (Additional file 4).
Grouping the samples per individual significantly ex-

plained 23% and 22% of the variation in unweighted and
weighted UniFrac distance matrices (Table 1), suggesting
that the main force driving the variability of skin micro-
biota in our samples was the individual. When assessing
alpha diversity, no statistical significant differences were
observed among individuals (Additional file 5A), prob-
ably due to the large differences in alpha diversity values
within the same dog. Thus, some dogs that could seem
less diverse because most of the skin sites presented less
diversity usually presented average values in the inner
pinna or perianal region, giving no statistical significant
differences among individuals.
On the other hand, clustering samples per skin site

explained 12% and 17% of the variation in unweighted
and weighted UniFrac distance matrices. Differences in
microbiota structure were also significant among almost
all pairs of skin sites, with the exception of the inter-
digital region when compared to the abdomen or axilla.

Table 1 Clustering of the samples per biological and technical
variables

Unweighted UniFrac
Adonis R2

Weighted UniFrac
Adonis R2

Individual 0.23** 0.22**

Skin site 0.12** 0.17**

Storage time 0.05** 0.05**

Chip 0.03* –

Person extracting 0.02* 0.02*

Sampler 0.01* 0.01*

− no significant clustering
**p value = 0.001; *p value < 0.05
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We found the greatest differences when comparing any
skin site to the perianal region followed by the nasal skin
(Additional file 6). Differences in alpha diversity among
skin sites were prevalent. The inner pinna displayed the
greatest diversity when compared to all the other sites
and was statistically different to all (p value = 0.028) but
the chin site. The chin, when considering observed
species, was significantly more diverse than the axilla
(p value = 0.028) (Additional file 5B).
Focusing on taxonomic analyses, we found that bac-

teria from the Gammaproteobacteria class were the most
abundant in dog skin microbiota, with the exception of
perianal regions where Bacilli class from Firmicutes
phylum were the most abundant.
Skin sites shared most of the taxa, but presented also spe-

cific taxonomic patterns: the abundance and distribution
varied significantly among skin sites, and unique taxa were
identified in some of the sites. Figure 2 shows different bar
plots, colored by the main families found in the skin. The
families that were differentially distributed (LDA score > 3,
p value = 0.05) are shown in Additional file 7.
The inner pinna had a higher amount of Proteobac-

teria phylum when compared to other skin sites, with
Gammaproteobacteria, Alphaproteobacteria, and Beta-
proteobacteria classes being the main representatives.
Bacilli (Firmicutes) and Flavobacteriia (Bacteroidetes)
were present in similar abundances to Proteobacteria.
Moreover, inner pinna presented many different and less
abundant bacteria.
The chin region was enriched in Gammaproteobac-

teria, with Pseudomonadaceae as the main representa-
tive family. The nasal skin was also enriched in
Gammaproteobacteria, but the main representative
family was Pasteurellaceae. Both families were differen-
tially distributed in their respective skin site.
The back and axilla had quite similar taxonomic

patterns: the main bacterial class was Gammaproteobac-
teria, with Moraxellaceae as the main family, followed by
Bacilli, with Lactobacillaceae as one of the main families.
The greatest taxonomic difference between both sites
was the higher abundance of Staphylococcaceae (Bacilli
class) in the axilla, which was also differentially
distributed when compared to the other skin sites.
The abdomen and interdigital regions had similar

taxonomic patterns, where most of the bacteria were
Gammaproteobacteria, specifically from Enterobacteria-
ceae, Moraxellaceae, and Pseudomonadaceae families,
followed by Cyanobacteria, specifically Xenococcaceae
family. However, Planococcaceae was found in the
abdomen but not in the interdigital region.
Finally, the perianal region was the skin site that

presented the most differentiated pattern in dog skin
microbiota. The main phylum was Firmicutes, especially
Bacilli, followed by Actinobacteria. Many different

families from different phyla were differentially distrib-
uted in the perianal region, indicating that it was the
most divergent skin site (Additional file 7). Most of the
abundant families in the perianal region were also differ-
entially distributed when compared to the other skin
sites. Some of them were Erysipelotrichaceae, Lachnos-
piraceae, Lactobacillaceae, and Veillonellaceae (Firmi-
cutes); Corynebacteriaceae (Actinobacteria); and
Bacteroidaceae (Bacteroidetes). The perianal region was
also enriched in Fusobateriaceae, despite not being sta-
tistically differentially distributed when compared to
other skin sites.

Skin sites: network analysis
A network analysis detects bacterial relationships, within
and among different ecological niches. The global net-
work for all the skin sites considering the most abundant
families allowed us to understand more deeply skin
microbiota relationships in our cohort (Fig. 3, Table 2,
and Additional file 8). Some bacterial species interacted
specifically in the same skin site, whereas other bacterial
species interacted among different skin sites. Thus, we
have different ecological niches within the skin.
The chin, abdomen, axilla, and perianal region had the

highest number of interactions, with 373, 226, 179, and
93, respectively, and also some extra interactions among
families of other skin sites (Table 2 and Additional file 8).
On the other hand, the inner pinna, nasal skin, inter-
digital region, and dorsal back presented a lower number
of interactions and no inter-site interactions, as shown
in Fig. 3. The inner pinna had 35 family interactions,
interdigital region 23, nasal skin 7, and dorsal back 2.
In some cases, specific taxonomic interactions were

found within different skin sites. We identified six co-
occurrence interactions highly spread among different
skin sites (present in 4 out of 8 skin sites): Neisseriaceae
and Weeksellaceae; Neisseriaceae and Xenococcaceae (in
the chin, axilla, abdomen, and perianal); Sphingomona-
daceae and Caulobacteraceae (in the inner pinna, axilla,
abdomen, and perianal); Sphingomonadaceae and
Nocardioidaceae (in the inner pinna, axilla, abdomen,
and interdigital region); Sphingomonadaceae and Oxalo-
bacteraceae (in the inner pinna, chin, abdomen, and
interdigital); and Weeksellaceae and Flavobacteriaceae
(in the chin, axilla, abdomen, and interdigital). However,
most interactions (517 out of 703) were exclusive from
one specific skin site (Additional file 8).
This global network demonstrated that most interac-

tions in the canine skin were co-occurrence relationships
rather than mutual exclusion. Among mutual exclusion
interactions, few nodes were negatively linked to many
different families within a skin site (circles marked with
a wider black line in Fig. 3), showing an apparent inva-
sive pattern. That was seen for Pseudomonadaceae

Cuscó et al. Microbiome  (2017) 5:139 Page 6 of 15



family in the axilla, chin, and abdomen and also for
Enterobacteriaceae family in the abdomen. When blast-
ing the most abundant OTUs from the highly connected
mutual exclusion nodes, we found that the main genera
were Pseudomonas (for Pseudomonadaceae) and Erwinia
and Pantoea (for Enterobacteriaceae) (Additional file 9).

Effect of host-specific and technical variables on canine
skin microbiota
In order to assess if any host-specific variable defined
the skin microbiota composition or structure in any of
the skin sites, we inspected the alpha and beta diversity
of each skin site grouped by the different host-specific
variables such as sex, coat color, temporality, or recent

surgery and assessed statistical significance except for
the recent surgery due to the small sample size. Tempor-
ality was a variable that classified all of the animals within
two groups: T1 includes those dogs born from January to
May, which have been in the kennel at least 5.5 months,
whereas T2 includes those dogs born from June to Septem-
ber, which have been in the kennel 2.5 months (detailed ex-
planation is in the “Methods” section).
Temporality was the variable that explained ubiqui-

tously a significant amount of variation for all the skin
sites. Temporality significantly affected the microbiota
composition (unweighted UniFrac) and also the commu-
nity structure (weighted UniFrac) in all skin sites
(Table 3; Additional file 10). This effect was especially

Fig. 2 Taxonomic profiles per skin site. Taxa summary bar plots per class colored by main families within each skin site. Prot_alpha:
Proteobacteria_Alphaproteobacteria; Prot_beta: Proteobacteria_Betaproteobacteria; Prot_gamma: Proteobacteria_Gammaproteobacteria; Fi_:
Firmicutes; Fi_Erys: Firmicutes_Eryspelotrichi; B_Bact: Bacteroidetes_Bacteroidia; and B_Flavo: Bacteroidetes_Flavobacteriia

Cuscó et al. Microbiome  (2017) 5:139 Page 7 of 15



large on the inner pinna, almost coincident with PC1
component, explaining 26% of the variation among sam-
ples and with an ANOSIM R value of 0.84, suggesting
great dissimilarity between T1 and T2 (Table 3, Fig. 4a).
In the other skin sites, temporality explained more than
9% of the variation (except for the nasal skin), with
ANOSIM R values ranging from 0.24 to 0.38 for the
different sites.
Delving into the effect of this variable on the inner

pinna skin microbiota, we visually corroborated the pat-
tern in the unweighted UniFrac consensus tree (Fig. 4b):
two clear clusters were elucidated matching with T1 and
T2 groups (except dog 8). Even when looking at the
genetic background, we could see that littermates were
usually as similar as any other dog in the same group

(except dogs 2 and 3) and sharing the sire did not make
dogs resemble more in skin microbiota. Moreover, dogs
from the T1 group were significantly more diverse than
those from the T2 group (Fig. 4c). Finally, LEFSe analysis
detected 61 families differentially distributed in the inner
pinna when clustering in these two groups (Additional file 11)
and those with higher relative abundances are plotted in
Fig. 4d. The most representative taxa differentially distrib-
uted in T1 and T2 are Sphingomonadaceae, Microbacteria-
ceae, Oxalobacteraceae, Caulobacteraceae, Nocardiaceae,
and others with lower abundances. Sphingomonadaceae
provides the greatest difference: it is highly present in the
inner pinna of T1 dogs (with a median value around 11% of
total microbiota composition), whereas it is almost absent
on T2 dogs.

Fig. 3 Significant co-occurrence and co-exclusion interactions among the abundant families (> 0.005%) in the dog skin microbiota. Nodes are
colored depending on the skin site they are found; nodes with a wider black circle are those highly connected mutual exclusion nodes; edges
are green to represent co-occurrence patters and red to represent co-exclusions. Data associated with the complete network can be found
in Additional file 8

Table 2 Summary statistics of microbial interactions in the skin of a cohort of healthy dogs

Chin Abdomen Axilla Perianal region Inner pinna Nasal skin ID area Dorsal back

Total interactions 373 226 179 93 35 7 23 2

Common interaction 139 103 104 43 13 4 13 2

Unique interactions 234 123 75 50 22 3 10 0

Inter-site interactiona 3 20 10 12 0 0 0 0

% of unique interactions 63% 54% 42% 54% 63% 43% 43% 0%

% of co-occurrence 92% 88% 79% 100% 100% 100% 100% 100%

ID interdigital
aInter-site interactions represent families from a specific skin site, affecting other families from another skin site
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The sex of the dog also explained some variation. The
microbiota community structure in the abdomen was
better explained by the variable sex (11% of the variation
in the weighted UniFrac plot) rather than temporality.
This variable also explained to a lesser extent some
variability of the microbiota composition (unweighted
UniFrac) in the dorsal back and the community struc-
ture (weighted UniFrac) in the axilla (Table 3). Consider-
ing the three skin sites affected by sex (abdomen, back,
and axilla), we could see that males had an overrepre-
sentation of bacteria from Fusobacteria phylum, with
Sneathia and Fusobacterium genera; other genera such
as Actinomycetospora, Gemella, Parvimonas, Brevundi-
monas, and phylum SR1 were also overrepresented on
males. Females had an overrepresentation of Enterobac-
teriaceae family (Table 4).
We delved deeper into the five dogs that had under-

gone surgery followed by a medical treatment prior to
sampling (Table 5 and Additional file 5C). Dogs 14, 15,
16, and 17 presented reduced alpha diversity values in
several skin sites, being the chin and abdomen always
affected, whereas alpha diversity values of the inner
pinna, nasal skin, and back were not reduced in any dog.
Dog 20, which underwent surgery 3 months before
sampling, presented average alpha diversity values.
The coat color was not significantly explaining the skin

microbiota structure or composition in any skin site.
We performed an additional analysis comparing the

US cohort with some dogs from a European cohort (see
the “Methods” section for more details). The European
cohort included dogs from different breeds, ages, and
inhabiting in different households that had been

previously processed along 18 months in different
batches. Two clear clusters were observed: dogs from
the European cohort were grouping in a tight cluster,
whereas the cluster for the US dogs was more diffuse.
The grouping of back samples was stronger than the
grouping of abdomen samples (ANOSIM R = + 0.68),
and it significantly explained 12% of the variation in un-
weighted UniFrac (Additional file 12).
We also assessed the effect of other technical variables,

such as sampler, person extracting, chip, and storage
time. These technical variables explained 5% or less of
the variation in the PCoA plots (Table 1).

Discussion
Our results suggest that the main force driving the skin
microbiota composition is the individual, followed by
the skin site, even in a homogeneous cohort of dogs co-
habiting and interacting together. This is in line with
what we found previously in a cohort of nine healthy
dogs from three different breeds, although in that study
we could not elucidate whether the individual effect was
real or represented an environmental influence [9]. Here,
we homogenized the cohort to account for different ef-
fects: same crossbreed dogs, same age, same diet, and
same environment. An individual effect had also been
reported as the main driver of fungal skin microbiota
structure and composition in dogs from heterogeneous
cohorts [45] and had been suggested to also affect bacter-
ial skin microbiota in dogs, despite the fact that the indi-
vidual was not assessed directly [7]. Similarly, these two
factors also shaped human skin microbiota, with great
variability within several skin sites of an individual and
between individuals having been reported [12, 46, 47].
The human skin has three main microhabitats (moist,

dry, and sebaceous) inhabited by a specific taxa [13, 48].
Although the three microhabitats clearly identified in
humans were not seen in dogs [30], Rodrigues-
Hoffmann and colleagues reported significant differences
between haired and mucosal or mucocutaneous junc-
tions [7], which coincide with our current observation.
Here, we found that the mucocutaneous perianal region
and, to a lower extent, nasal skin presented different
community structures (weighted UniFrac) as well as
lower alpha diversity values when compared to all other
haired skin regions.
Globally, in our cohort, Gammaproteobacteria

followed by Bacilli were the most abundant classes in all
regions in exception of perianal region with the same
classes but the opposite order. A previous study includ-
ing the dorsal neck, abdomen, and axilla samples from
40 domestic dogs inhabiting different households found
Gammaproteobacteria and Bacilli as main classes, but
also Actinobacteria [10]. On the other hand, Hoffmann
and colleagues [7] detected different abundant classes

Table 3 Host-specific variables that cluster samples in specific
skin sites

Unweighted UniFrac Weighted UniFrac

Skin site Variable ANOSIM
R

Adonis
R2

ANOSIM
R

Adonis
R2

Inner pinna (A) Temporality 0.84** 0.26** 0.41** 0.22**

Axilla (E) Temporality 0.38** 0.11** 0.09* 0.07*

Dorsal back (D) Temporality 0.37** 0.13** 0.28** 0.14**

Interdigital (G) Temporality 0.28** 0.11** 0.09* 0.07*

Abdomen (F) Temporality 0.28** 0.10** 0.09* 0.07*

Perianal (H) Temporality 0.27** 0.09** – –

Chin (B) Temporality 0.24* 0.10* 0.10* 0.08*

Abdomen Sex 0.13* 0.05* 0.24* 0.11**

Nasal skin (C) Temporality 0.11* 0.05* 0.06* –

Back Sex – 0.05* – –

Axilla Sex – – – 0.06*

Statistical significance of the clustering calculated through ANOSIM and
Adonis values for beta diversity unweighted and weighted UniFrac matrices
– no significant clustering
**p value = 0.001, *0.05 > p value > 0.001
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depending on the skin site: Betaproteobacteria was the
most common in the concave pinna, dorsal lumbar, and
ear; Actinobacteria, in the axilla and interdigital skin;
Gammaproteobacteria, in the nostril; and Clostridia and
Bacteroidia, in the perianal region. Finally, in our previous
study, we found Bacilli as the main class for all the skin
sites with the exception of inner pinna that had Alphapro-
teobacteria [9]. Thus, as the inter-individual variability is
large, independent studies led to similar results only when
a large number of individuals are included.
Network analysis elucidated the overall community

organization throughout the skin of our canine cohort,
with more than 40% of the interactions exclusive of each
site, demonstrating a skin site signature. The back skin
presented only two interactions, and both of them were
back-exclusive, and probably, other interactions remain

hidden because only abundant families were included
for network analysis. Among the rest of the skin sites,
the inner pinna and chin were the sites that presented a
higher proportion of unique interactions, suggesting
stronger specialization or influences. On the one hand,
the inner pinna is an anatomically and environmentally
isolated site when compared to other skin sites. On the
other hand, we suggest that the chin presented
influences of both drinking water and oral microbiota.
The most abundant families were Xenococcaceae and
Pseudomonadaceae, which had been isolated in several
water sources [49, 50]. Moreover, the following abundant
families, such as Fusobacteriaceae, Moraxellaceae,
Porphyromonadaceae, Neisseriaceae, and Flavobacteria-
ceae, were previously found as main taxa in canine oral
microbiota [8, 51].

Fig. 4 Effect of temporality on the inner pinna. Color blue represents T1 group (dogs born from January to May that had been in the kennel for at least
5.5 months) and color red represents T2 group (dogs born from June to September that had been in the kennel for 2.5 months). a Unweighted UniFrac
PCoA beta diversity plot. b Unweighted UniFrac consensus tree: dogs sharing sire present same-colored branches and littermates are circled and colored
with a common pattern within a group. c Alpha diversity rarefaction curves using observed species metrics. d Boxplots of the main differentially distributed
families: those include families with abundances > 1% in any group and also LEfSe significant (LDA score > 3.0, p value < 0.05)
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Network analyses also detected a high number of
mutual exclusions when Enterobacteriaceae were
abundant in the abdomen or Pseudomonadaceae were
abundant in the abdomen, axilla, or chin. When blasting
the OTUs that presented this apparently invasive pattern
(Additional file 8), we found that the ones belonging to
Enterobacteriaceae family had been mainly isolated from
soil or plant surfaces [52, 53], whereas those from Pseu-
domonadaceae family had been mainly isolated from soil
and different sources of water [50]. Thus, we suggest
that this pattern is representing a recent exposure to the
environment prior to sampling of some of the dogs.
Other bacteria with a likely environmental origin are

Xenococcaceae with Chroococcidiopsis as its main genus.
Bacteria from this genus had been mainly isolated from
freshwater environments including lakes, soil, or inside
of rocks [49]. Moreover, they have already been detected
in healthy dog skin [7, 9]. The presence of these bacteria
with high abundance at the interdigital and abdominal
regions may suggest these two regions are more suscep-
tible to environmental influences, which seems reason-
able since these two skin sites have direct contact with
the ground.

The skin sites could be classified based upon two
patterns. The first pattern included sites having a high
number of interactions among abundant families, with
some interactions with other skin sites (chin, axilla, ab-
domen, and perianal region). The second pattern
included sites having a lower number of interactions and
displayed exclusively within-site interactions (pinna,
nasal skin, dorsal back, and interdigital area). We
suggest that the inter-site relationships could be related
to topographical, behavioral, and environmental factors.
The chin is juxtaposed to the mouth, which is a main
entrance for the environment through licking, eating, or
drinking water. Dogs could lap the same water in which
they are playing, and they usually lick themselves, which
could explain some interactions among those sites.
Additionally, the abdomen and axilla are anatomically
continuous on the ventral side of the dog and close to
the ground facilitating interactions with the environment
and between the two skin sites. Furthermore, dogs may
come into contact with fecal matter, which could be the
origin of shared OTUs among the abdomen, axilla and
perianal regions. The main families of the second
pattern, constituted by the inner pinna, dorsal back,

Table 4 Differentially abundant taxa associated to sex

Abdomen Axilla Back

Phylum Family or genus Female Male Female Male Female Male

Fusobacteria Fusobacteriales (order) 1.70% 21.45% 1.64% 13.44% 3.54% 9.55%

Fusobacteria Leptotrichiaceae 0.23% 2.70% 0.24% 3.53% 0.82% 3.00%

Fusobacteria Sneathia 0.01% 0.34% 0.05% 0.25% 0.21% 0.47%

Fusobacteria Fusobacterium NS NS 1.41% 9.91% 2.72% 6.54%

Actinobacteria Actinomycetospora NS NS 0.00% 0.04% 0.00% 0.15%

Firmicutes Gemella 0.19% 3.04% 0.51% 1.61% NS NS

Firmicutes Parvimonas NS NS 0.16% 1.82% 0.55% 1.15%

Proteobacteria Brevundimonas NS NS 0.00% 0.01% 0.00% 0.01%

SR1 SR1 NS NS 0.05% 0.19% 0.14% 0.44%

Proteobacteria Enterobacteriaceae 14.08% 1.31% 7.78% 0.69% NS NS

Relative abundances of main taxa found to be differentially distributed (LDA score > 3, p value < 0.05) between males and females in at least two out of the three
skin sites affected
NS no significant differences

Table 5 Information of the dogs that had undergone surgery prior to sampling

Individual Surgery date Surgery type Medicines From To Sites w. reduced α-diversity a

Dog 14 2016/04/08 Spay Amoxicillin (antibiotic) +
Previcox (anti-inflammatory)

2016/04/08 2016/04/13 Chin and abdomen

Dog 15 2016/04/18 Spay Amoxicillin (antibiotic) +
Previcox (anti-inflammatory)

2016/04/18 2016/04/23 Chin, axilla, abdomen, and ID region

Dog 16 2016/03/30 GI obstruction Pepcid AC (antihistamine) +
Tramadol (analgesic)

2016/04/01 2016/04/06 Chin, axilla, abdomen, ID region, and perianal area

Dog 17 2016/04/12 Spay Previcox (anti-inflammatory) 2016/04/12 2016/04/16 Chin, axilla, abdomen, and perianal

Dog 20 2016/01/05 Spay Rimadyl (anti-inflammatory) 2016/01/05 2016/01/10 None
aReduced alpha diversity values include those ones that are half or less than the median alpha diversity of that specific skin site of the non-surgery
dogs (Additional file 4C)
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interdigital area, and nasal skin, were only interacting
with other families in the same skin site, suggesting that
both anatomical isolation and stronger effects of other
microbiota (nostril microbiota, for nasal skin, and soil
microbiota, for interdigital region) may account for the
exclusive within-site interactions.
With this general overview, we sought to elucidate if

any host-specific variable determined the observed diver-
sity, composition, and/or community structure in any of
the skin sites. When considering the temporality, the
two groups were significantly different: T1, which
includes dogs born from January to May that had spent
at least 5.5 months in the kennel, and T2, which in-
cludes dogs born from June to September that had spent
2.5 months in the kennel. This effect was highest on the
inner pinna, with a significant ANOSIM R value of +
0.84, suggesting great dissimilarity between groups asso-
ciated to temporality (Fig. 4). The main taxonomic
difference among the inner pinna from both groups was
due to Sphingomonadaceae, specifically Sphingomonas.
These taxa are classically considered air- and dust-borne
[54], although they have also been identified on dog skin
microbiota [6, 9] and in animal sheds [54, 55], even
specifically on dogs’ [56]. These bacteria are cultivable at
temperatures ranging from 4 to 28 °C, but not at 37 °C
[54]. Independent studies of grapevine microbiome
showed a link between the abundance of Sphingomona-
daceae and lower temperatures [57, 58]. The bacterial
pool of the environment and the air is constantly shaped
with seasonal characteristics such as humidity, UV light,
and temperature [59], and it could be shaping to some
extent the skin microbiota of dogs via environmental
selection. We cannot distinguish if the effect was corre-
lated to season of birth or time spent in the kennel,
since the older dogs were born in colder seasons, which
could have an effect in the initial colonization, but these
dogs also entered the kennel in autumn and spent more
cold months at the kennel.
Although it is difficult to elucidate which bacteria are

really microbiota and which are only transient members
from the environment, in our case, we sampled at a
unique time point and still found significant differences
regarding temporality. Therefore, Sphingomonadaceae
and some of the other taxa differentially distributed
(Fig. 4) would potentially be considered as normal colo-
nizers of dog skin microbiota. An analogous example
would be the genus Enhydrobacter that was commonly
found in air and surfaces of the built environment of
Hong Kong [60] and also presented high abundances in
the skin of Chinese individuals [22, 61]. Also, Amerindian
individuals, who spend more time outdoors than
westernized individuals, presented a very diverse skin
microbiota with a high proportion of bacteria commonly
regarded as environmental [26].

Besides temporality, sex had a significant effect on the
abdomen, back, and axilla microbiota of our cohorts.
Female dogs presented an overrepresentation of Entero-
bacteriales and Enterobacteriaceae families, coinciding
with what was previously reported on the hands of
humans [15].
Dogs that had undergone surgery within the previous

month presented low alpha diversity values, always in
the abdomen and chin. The surgery procedures that had
undergone implied shaving the abdomen and were
followed by oral medication administration (sometimes
antibiotics), which could be associated with the lower
alpha diversity values. Larger studies should be per-
formed to corroborate this observation, since the finding
was based upon only 4 dogs.
When comparing dogs from the US and European

cohorts, the expected result would be a tight cluster for
the samples from the homogeneous US cohort and a
diffuse if any clustering for dogs from the European
cohort. In contrast to the well-controlled US cohort
(same crossbred dogs, similar ages, same diet, shared en-
vironment, samples obtained and processed as a batch,
etc.), dogs from the European cohort were collected
along 18 months and were pet dogs from different
households that did not interact with each other, with
different ages and genetic background. Even considering
this heterogeneity, the European dogs clustered together
in a single group differing from the environmental well-
controlled US cohort that presented a more spread
cluster (Additional file 12). These clustering could be
associated to the geographic region and its associated
environment, as it has already been described for
humans with geography [22, 27], geographical isolation
[26], or urbanization [20, 28, 29] grouping differently
skin microbial communities. However, we cannot dis-
card that this clustering is reflecting variability associ-
ated to the laboratory where the samples were extracted.
To minimize the variability at technical level between
both cohorts, one person was present in both studies
(AC), the samples were obtained and extracted with the
same protocol, PCRs were performed by the same
person in the same laboratory (AC), and sequencing
was performed in the same facilities using the same
sequencer.
Finally, we should note two main limitations of this

study. Despite detecting a clear environmental effect
with bacteria from the environment in some skin
sites, we did not have environmental samples to
strongly support these findings. Future studies of skin
microbiota should consider sampling not only the an-
imals, but also their environment even if they are
sharing it. Moreover, regarding temporality, we could
not distinguish between the season of birth and the
time spent in the kennel, since these two variables
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completely overlap. Longitudinal studies on dogs living
together could give some insights on this hypothesis.
Understanding the skin microbiota of the healthy skin

will allow a better knowledge of the intrinsic variability
in health and the assessment of what is an altered state.
It will also provide a background to develop its clinical
applications [31] such as identifying an altered skin
microbiota landscape or developing personalized therap-
ies aimed at shifting the balance toward a healthy skin
microbiota, promoting beneficial bacteria growth rather
than killing all bacteria. Thus, to overcome the individ-
ual variability inherent to skin microbiota studies, we
would recommend longitudinal studies assessing diver-
gences between health and disease comparing affected
vs unaffected regions within an individual through time,
or, alternatively, the cohort should be large enough and
well controlled if case-control studies are preferred.

Conclusions
The individual drives the skin microbiota variability in
healthy dogs, followed by the skin site. Environmentally
associated bacteria could be reflecting the different degrees
of exposure of each skin site and each dog. Network ana-
lyses elucidated bacterial interactions within each skin site
and between skin sites for the chin, abdomen, axilla, and
the perianal region. When analyzing each skin site inde-
pendently to assess host-specific factors, we found that
temporality (season of birth and time spent in the kennel)
affected all the skin sites and specially the inner pinna. We
also found taxonomic differences among male and female
dogs on the abdomen, axilla, and back.
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in red are dogs born from June to September that had spent 2.5 months
in the kennel (T2 group). (DOCX 846 kb)
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