2,311 research outputs found

    Time-resolved photometric and spectroscopic analysis of a luminous Ap star HD103498

    Full text link
    We present the results on the photometric and spectroscopic monitoring of a luminous Ap star HD103498. The time-series photometric observations were carried out on 17 nights using three-channel fast photometer attached to the 1.04-m optical telescope at ARIES, Nainital. The photometric data of five nights of year 2007 show clear signature of 15-min periodicity. However, the follow-up observations during 2007--2009 could not repeated any such periodicity. To confirm the photometric light variations, the time-series spectroscopic observations were carried out with the 2.56-m Nordic Optical Telescope (NOT) at La Palma on February 2, 2009. Any radial velocity variations were absent in this data set which is in full agreement with the photometric observations taken near the same night. Model atmosphere and abundance analysis of HD103498 show that the star is evolved from the Main Sequence and its atmospheric abundances are similar to two other evolved Ap stars HD133792 and HD204411: large overabundances of Si, Cr, and Fe and moderate overabundances of the rare-earth elements. These chemical properties and a higher effective temperature distinguish HD103498 from any known roAp star.Comment: 8 Figures, 2 Tables, 9 Pages, Accepted for publication in MNRA

    CFD Investigation on Fluid Flow Analysis in Fluid Separator

    Get PDF
    The analysis of fully developed flow in the two fluid separators is an important issue in the industry such as production, processing, and petrochemical. The role of the two fluid separator is to separate two different fluid by using an appropriate mechanism without changing the quality. In this study, we have reviewed different mechanisms of two fluid separations such as gravity sedimentation, centrifugation, and electro kinetics, etc. The current work focuses on the design aspect of a fluid separator with respect to geometry and thermal design. CFD has been used to simulate flow in a fluid separator and its results have been verified experimentally. Flow rates used in the simulation have different values in interval 0.1 LPM. The study shows the best performance of fluid separator with respect to shape and flow rates. The given work helps to co-relate various design of separator in the industry with laboratory separators

    The Milky Way Bulge: Observed properties and a comparison to external galaxies

    Full text link
    The Milky Way bulge offers a unique opportunity to investigate in detail the role that different processes such as dynamical instabilities, hierarchical merging, and dissipational collapse may have played in the history of the Galaxy formation and evolution based on its resolved stellar population properties. Large observation programmes and surveys of the bulge are providing for the first time a look into the global view of the Milky Way bulge that can be compared with the bulges of other galaxies, and be used as a template for detailed comparison with models. The Milky Way has been shown to have a box/peanut (B/P) bulge and recent evidence seems to suggest the presence of an additional spheroidal component. In this review we summarise the global chemical abundances, kinematics and structural properties that allow us to disentangle these multiple components and provide constraints to understand their origin. The investigation of both detailed and global properties of the bulge now provide us with the opportunity to characterise the bulge as observed in models, and to place the mixed component bulge scenario in the general context of external galaxies. When writing this review, we considered the perspectives of researchers working with the Milky Way and researchers working with external galaxies. It is an attempt to approach both communities for a fruitful exchange of ideas.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen E., Peletier R., Gadotti D., Springer Publishing. 36 pages, 10 figure

    The Trypanosoma cruzi Virulence Factor Oligopeptidase B (OPBTc) Assembles into an Active and Stable Dimer

    Get PDF
    Oligopeptidase B, a processing enzyme of the prolyl oligopeptidase family, is considered as an important virulence factor in trypanosomiasis. Trypanosoma cruzi oligopeptidase B (OPBTc) is involved in host cell invasion by generating a Ca2+-agonist necessary for recruitment and fusion of host lysosomes at the site of parasite attachment. The underlying mechanism remains unknown and further structural and functional characterization of OPBTc may help clarify its physiological function and lead to the development of new therapeutic molecules to treat Chagas disease. In the present work, size exclusion chromatography and analytical ultracentrifugation experiments demonstrate that OPBTc is a dimer in solution, an association salt and pH-resistant and independent of intermolecular disulfide bonds. The enzyme retains its dimeric structure and is fully active up to 42°C. OPBTc is inactivated and its tertiary, but not secondary, structure is disrupted at higher temperatures, as monitored by circular dichroism and fluorescence spectroscopy. It has a highly stable secondary structure over a broad range of pH, undergoes subtle tertiary structure changes at low pH and is less stable under moderate ionic strength conditions. These results bring new insights into the structural properties of OPBTc, contributing to future studies on the rational design of OPBTc inhibitors as a promising strategy for Chagas disease chemotherapy

    The Seventh Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Seventh Data Release of the Sloan Digital Sky Survey (SDSS), marking the completion of the original goals of the SDSS and the end of the phase known as SDSS-II. It includes 11663 deg^2 of imaging data, with most of the roughly 2000 deg^2 increment over the previous data release lying in regions of low Galactic latitude. The catalog contains five-band photometry for 357 million distinct objects. The survey also includes repeat photometry over 250 deg^2 along the Celestial Equator in the Southern Galactic Cap. A coaddition of these data goes roughly two magnitudes fainter than the main survey. The spectroscopy is now complete over a contiguous area of 7500 deg^2 in the Northern Galactic Cap, closing the gap that was present in previous data releases. There are over 1.6 million spectra in total, including 930,000 galaxies, 120,000 quasars, and 460,000 stars. The data release includes improved stellar photometry at low Galactic latitude. The astrometry has all been recalibrated with the second version of the USNO CCD Astrograph Catalog (UCAC-2), reducing the rms statistical errors at the bright end to 45 milli-arcseconds per coordinate. A systematic error in bright galaxy photometr is less severe than previously reported for the majority of galaxies. Finally, we describe a series of improvements to the spectroscopic reductions, including better flat-fielding and improved wavelength calibration at the blue end, better processing of objects with extremely strong narrow emission lines, and an improved determination of stellar metallicities. (Abridged)Comment: 20 pages, 10 embedded figures. Accepted to ApJS after minor correction

    The Fifth Data Release of the Sloan Digital Sky Survey

    Get PDF
    This paper describes the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). DR5 includes all survey quality data taken through June 2005 and represents the completion of the SDSS-I project (whose successor, SDSS-II will continue through mid-2008). It includes five-band photometric data for 217 million objects selected over 8000 square degrees, and 1,048,960 spectra of galaxies, quasars, and stars selected from 5713 square degrees of that imaging data. These numbers represent a roughly 20% increment over those of the Fourth Data Release; all the data from previous data releases are included in the present release. In addition to "standard" SDSS observations, DR5 includes repeat scans of the southern equatorial stripe, imaging scans across M31 and the core of the Perseus cluster of galaxies, and the first spectroscopic data from SEGUE, a survey to explore the kinematics and chemical evolution of the Galaxy. The catalog database incorporates several new features, including photometric redshifts of galaxies, tables of matched objects in overlap regions of the imaging survey, and tools that allow precise computations of survey geometry for statistical investigations.Comment: ApJ Supp, in press, October 2007. This paper describes DR5. The SDSS Sixth Data Release (DR6) is now public, available from http://www.sdss.or

    The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era

    Get PDF
    In the updated APOGEE-Kepler catalog, we have asteroseismic and spectroscopic data for over 3000 first ascent red giants. Given the size and accuracy of this sample, these data offer an unprecedented test of the accuracy of stellar models on the post-main-sequence. When we compare these data to theoretical predictions, we find a metallicity dependent temperature offset with a slope of around 100 K per dex in metallicity. We find that this effect is present in all model grids tested, and that theoretical uncertainties in the models, correlated spectroscopic errors, and shifts in the asteroseismic mass scale are insufficient to explain this effect. Stellar models can be brought into agreement with the data if a metallicity-dependent convective mixing length is used, with Delta alpha(ML), YREC similar to 0.2 per dex in metallicity, a trend inconsistent with the predictions of three-dimensional stellar convection simulations. If this effect is not taken into account, isochrone ages for red giants from the Gaia data will be off by as much as a factor of two even at modest deviations from solar metallicity ([Fe/H]- -0.5)

    "I really should've gone to the doctor": older adults and family caregivers describe their experiences with community-acquired pneumonia

    Get PDF
    BACKGROUND: Responding to acute illness symptoms can often be challenging for older adults. The primary objective of this study was to describe how community-dwelling older adults and their family members responded to symptoms of community-acquired pneumonia (CAP). METHODS: A qualitative study that used face-to-face semi-structured interviews to collect data from a purposeful sample of seniors aged 60+ and their family members living in a mid-sized Canadian city. Data analysis began with descriptive and interpretive coding, then advanced as the research team repeatedly compared emerging thematic categories to the raw data. Searches for disconfirming evidence and member checking through focus groups provided additional data and helped ensure rigour. RESULTS: Community-acquired pneumonia symptoms varied greatly among older adults, making decisions to seek care difficult for them and their family members. Both groups took varying amounts of time as they attempted to sort out what was wrong and then determine how best to respond. Even after they concluded something was wrong, older adults with confirmed pneumonia continued to wait for days, to over a week, before seeking medical care. Participants provided diverse reasons for this delay, including fear, social obligations (work, family, leisure), and accessibility barriers (time, place, systemic). Several older adults and family members regretted their delays in seeking help. CONCLUSION: Treatment-seeking delay is a variable, multi-phased decision-making process that incorporates symptom assessment plus psychosocial and situational factors. Public health and health care professionals need to educate older adults about the potential causes and consequences of unnecessary waits. Such efforts may reduce the severity of community-acquired pneumonia upon presentation at clinics and hospitals, and that, in turn, could potentially improve health outcomes
    corecore