164 research outputs found
On the relevance of the methane oxidation cycle to ozone hole chemistry
High concentrations of active chlorine are clearly responsible for the observed ozone depletion during the Antarctic polar spring. However, the mechanism behind the activation of chlorine from the reservoirs species HCl and ClONO2 and the maintenance of extremely high levels of active chlorine after polar sunrise is less well understood. Here, we focus on the influence of the methane oxidation cycle on 'ozone hole' chemistry through its effect on HOx and ClOx radicals. We demonstrate the great potential importance of the heterogeneous reaction HCl + HOCl yields Cl2 + H2O and the gasphase reaction ClO + CH3O2 yields ClOO + CH3O under sunlight conditions in polar spring. Under these conditions, the heterogeneous reaction is the main sink for HOx radicals. Through this channel, the HCl reservoir may be almost completely depleted. The gas phase reaction may control the levels of the CH3O2 radical, provided that high levels of ClO exist. Otherwise this radical initiates a sequence of reactions leading to a considerable loss of active chlorine. Moreover, the production of HOx radicals is reduced, and thereby the efficiency of the heterogeneous reaction limited. The two reactions together may accomplish the complete conversion of HCl into active chlorine, thereby leading to a rapid destruction of ozone
Estimates of the changes in tropospheric chemistry which result from human activity and their dependence on NO(x) emissions and model resolution
As a consequence of the non-linear behavior of the chemistry of the atmosphere and because of the short lifetime of nitrogen oxides (NO(x)), two-dimensional models do not give an adequate description of the production and destruction rates of NO(x) and their effects on the distributions of the concentration of ozone and hydroxyl radical. In this study, we use a three-dimensional model to evaluate the contribution of increasing NO(x) emissions from industrial activity and biomass burning to changes in the chemical composition of the troposphere. By comparing results obtained from longitudinally-uniform and longitudinally-varying emissions of NO(x), we demonstrate that the geographical representation of the NO(x) emissions is crucial in simulating tropospheric chemistry
Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides
The ultraviolet absorption spectra of a number of alkyl iodides which have been found in the troposphere, CH_3I, C_2H_5I, CH_3CH_2CH_2I, CH_3CHICH_3, CH_2I_2, and CH2_ClI, have been measured over the wavelength range 200â380 nm and at temperatures between 298 and 210 K. The absorption spectra of the monoiodides C_H3I, C_2H_5I, CH_3CH_2CH_2I, and CH_3CHICH_3 are nearly identical in shape and magnitude and consist of single broad bands centered near 260 nm. The addition of a chlorine atom in CH_2ClI shifts its spectrum to longer wavelengths (Ï_(max) at 270 nm). The spectrum of CH_2I_2 is further redâshifted, reaching a maximum of 3.85Ă10^(â18) cm^2 molecule^(â1) at 288 nm and exhibiting strong absorption in the solar actinic region, λ>290 nm. Atmospheric photolysis rate constants, J values, have been calculated assuming quantum efficiencies of unity for different solar zenith angles as a function of altitude using the newly measured cross sections. Surface photolysis rate constants, calculated from the absorption cross sections measured at 298 K, range from 3Ă10^(â6) s^(â1) for CH)3I to 5Ă10^(â3) s^(â1) for CH)2I)2 at a solar zenith angle of 40°
Emissions of major gaseous and particulate species during experimental burns of southern African biomass
Characteristic vegetation and biofuels in major ecosystems of southern Africa were sampled during summer and autumn 2000 and burned under semicontrolled conditions. Elemental compositions of fuels and ash and emissions of CO2, CO, CH3COOH, HCOOH, NOX, NH3, HONO, HNO3, HCl, total volatile inorganic Cl and Br, SO2and particulate C, N, and major ions were measured. Modified combustion efficiencies (MCEs, median = 0.94) were similar to those of ambient fires. Elemental emissions factors (EFel) for CH3COOH were inversely correlated with MCEs; EFels for heading and mixed grass fires were higher than those for backing fires of comparable MCEs. NOX, NH3, HONO, and particulate N accounted for a median of 22% of emitted N; HNO3emissions were insignificant. Grass fires with the highest EFels for NH3corresponded to MCEs in the range of 0.93; grass fires with higher and low MCEs exhibited lower EFels. NH3emissions for most fuels were poorly correlated with fuel N. Most Cl and Br in fuel was emitted during combustion (median for each = 73%). Inorganic gases and particulate ions accounted for medians of 53% and 30% of emitted Cl and Br, respectively. About half of volatile inorganic Cl was HCl indicating significant emissions of other gaseous inorganic Cl species. Most fuel S (median = 76%) was emitted during combustion; SO2and particulate SO42âaccounted for about half the flux. Mobilization of P by fire (median emission = 82%) implies large nutrient losses from burned regions and potentially important exogenous sources of fertilization for downwind ecosystems
Crystalline silicate dust around evolved stars I. The sample stars
This is the first paper in a series of three where we present the first
comprehensive inventory of solid state emission bands observed in a sample of
17 oxygen-rich circumstellar dust shells surrounding evolved stars. The data
were taken with the Short and Long Wavelength Spectrographs on board of the
Infrared Space Observatory (ISO) and cover the 2.4 to 195 micron wavelength
range. The spectra show the presence of broad 10 and 18 micron bands that can
be attributed to amorphous silicates. In addition, at least 49 narrow bands are
found whose position and width indicate they can be attributed to crystalline
silicates. Almost all of these bands were not known before ISO. We have
measured the peak positions, widths and strengths of the individual, continuum
subtracted bands. Based on these measurements, we were able to order the
spectra in sequence of decreasing crystalline silicate band strength. We found
that the strength of the emission bands correlates with the geometry of the
circumstellar shell, as derived from direct imaging or inferred from the shape
of the spectral energy distribution. This naturally divides the sample into
objects that show a disk-like geometry (strong crystalline silicate bands), and
objects whose dust shell is characteristic of an outflow (weak crystalline
silicate bands). All stars with the 33.6 micron forsterite band stronger than
20 percent over continuum are disk sources. We define spectral regions (called
complexes) where a concentration of emission bands is evident, at 10, 18, 23,
28, 33, 40 and 60 micron. We derive average shapes for these complexes and
compare these to the individual band shapes of the programme stars.Comment: 41 pages, 20 figures, accepted by A&A. Tables 4 to 20 are only
available in electronic form at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A
Temperature dependence of UV absorption cross sections and atmospheric implications of several alkyl iodides
The ultraviolet absorption spectra of a number of alkyl iodides which have been found in the troposphere, CH_3I, C_2H_5I, CH_3CH_2CH_2I, CH_3CHICH_3, CH_2I_2, and CH2_ClI, have been measured over the wavelength range 200â380 nm and at temperatures between 298 and 210 K. The absorption spectra of the monoiodides C_H3I, C_2H_5I, CH_3CH_2CH_2I, and CH_3CHICH_3 are nearly identical in shape and magnitude and consist of single broad bands centered near 260 nm. The addition of a chlorine atom in CH_2ClI shifts its spectrum to longer wavelengths (Ï_(max) at 270 nm). The spectrum of CH_2I_2 is further redâshifted, reaching a maximum of 3.85Ă10^(â18) cm^2 molecule^(â1) at 288 nm and exhibiting strong absorption in the solar actinic region, λ>290 nm. Atmospheric photolysis rate constants, J values, have been calculated assuming quantum efficiencies of unity for different solar zenith angles as a function of altitude using the newly measured cross sections. Surface photolysis rate constants, calculated from the absorption cross sections measured at 298 K, range from 3Ă10^(â6) s^(â1) for CH)3I to 5Ă10^(â3) s^(â1) for CH)2I)2 at a solar zenith angle of 40°
Haloe Antarctic observations in the spring of 1991
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95167/1/grl6630.pd
Gravitational Radiation from Gamma-Ray Burst Progenitors
We study gravitational radiation from various proposed gamma-ray burst (GRB)
progenitor models, in particular compact mergers and massive stellar collapses.
These models have in common a high angular rotation rate, and the final stage
involves a rotating black hole and accretion disk system. We consider the
in-spiral, merger and ringing phases, and for massive collapses we consider the
possible effects of asymmetric collapse and break-up, as well bar-mode
instabilities in the disks. We calculate the strain and frequency of the
gravitational waves expected from various progenitors, at distances based on
occurrence rate estimates. Based on simplifying assumptions, we give estimates
of the probability of detection of gravitational waves by the advanced LIGO
system from the different GRB scenarios.Comment: 26 pages, 5 figures, accepted for publication in Ap
- âŠ