41 research outputs found

    Age at first birth in women is genetically associated with increased risk of schizophrenia

    Get PDF
    Prof. Paunio on PGC:n jäsenPrevious studies have shown an increased risk for mental health problems in children born to both younger and older parents compared to children of average-aged parents. We previously used a novel design to reveal a latent mechanism of genetic association between schizophrenia and age at first birth in women (AFB). Here, we use independent data from the UK Biobank (N = 38,892) to replicate the finding of an association between predicted genetic risk of schizophrenia and AFB in women, and to estimate the genetic correlation between schizophrenia and AFB in women stratified into younger and older groups. We find evidence for an association between predicted genetic risk of schizophrenia and AFB in women (P-value = 1.12E-05), and we show genetic heterogeneity between younger and older AFB groups (P-value = 3.45E-03). The genetic correlation between schizophrenia and AFB in the younger AFB group is -0.16 (SE = 0.04) while that between schizophrenia and AFB in the older AFB group is 0.14 (SE = 0.08). Our results suggest that early, and perhaps also late, age at first birth in women is associated with increased genetic risk for schizophrenia in the UK Biobank sample. These findings contribute new insights into factors contributing to the complex bio-social risk architecture underpinning the association between parental age and offspring mental health.Peer reviewe

    Reassessing the effect of colour on attitude and behavioural intentions in promotional activities: The moderating role of mood and involvement

    Get PDF
    The present research examines the effect of background colour on attitude and behavioural intentions in various promotional activities taking into consideration the moderating role of mood and involvement. Three experiments reflecting different promotional activities (window display, consumer trade show, guerrilla marketing) were conducted for this purpose. Overall, findings indicate that cool background colours, in contrast to warm colours, induce more positive attitudes and behavioural intentions mainly in positive mood, and low involvement conditions. Implications are also discussed

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Designing Gesture-Based Control for Factory Automation

    No full text
    Abstract. We report the development and evaluation of a gesture-based interaction prototype for controlling the loading station of a factory automation system. In this context, gesture-based interaction has the potential to free users from the tedious physical controls but it must also account for safety considerations and users ’ perceptions. We evaluated the gesture interaction concept in the field to understand its applicability to industrial settings. Our findings suggest that gesture-based interaction is an emotional, physically charged experience that has the potential to enhance the work process. Participants ’ feedback also highlighted challenges related to the reliability of gesture recognition technology in the workplace, the perceived professionalism of gesture-based interaction, and the role of physical feedback in promoting feeling of control. Our results inform the development of gesture-based interaction for similar contexts

    Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection

    No full text
    Dendritic cells (DC) have an increasingly important role in vaccination therapy; therefore, this study sought to determine the migratory capacity and immunogenic function of murine bone-marrow (BM)-derived DC following subcutaneous (s.c.) and intravenous (i.v.) injection in vivo. DC were enriched from BM cultures using metrizamide. Following centrifugation, the low-buoyant density cells, referred to throughout as DC, were CD11chigh, Iab high, B7-1high and B7-2high and potently activated alloreactive T cells in mixed lymphocyte reactions (MLR). In contrast, the high-density cells expressed low levels of the above markers, comprised mostly of granulocytes based on GR1 expression, and were poor stimulators in MLR. Following s.c. injection of fluorescently labelled cells into syngeneic recipient mice, DC but not granulocytes migrated to the T-dependent areas of draining lymph nodes (LN). DC numbers in LN were quantified by flow-cytometric analysis, on 1, 2, 3, 5 and 7 days following DC transfer. Peak numbers of around 90 DC per draining LN were found at 2 days. There was very little migration of DC to non-draining LN, thymus or spleen at any of the time-points studied. In contrast, following i.v. injection, DC accumulated mainly in the spleen, liver and lungs of recipient mice but were largely absent from peripheral LN and thymus. The ability of DC to induce T-cell-mediated immune responses was examined using trinitrobenzenesulphate (TNBS)-derivatized DC (TNBS-DC) to sensitize for contact hypersensitivity responses (CHS) in naive syngeneic recipients. Following s.c. injection, as few as 105 TNBS-DC, but not TNBS-granulocytes, sensitized for CHS responses. However, the same number of TNBS-DC failed to induce CHS following i.v. injection. In summary, this study provides new and quantitative data on the organ specific migration of murine BM-derived DC following s.c. and i.v. injection. The demonstration that the route of DC administration determines the potency of CHS induction, strongly suggests that the route of immunization should be considered in the design of vaccine protocols using DC
    corecore