71 research outputs found

    Focused Anticoagulation Service in Family Medicine Residencies

    Get PDF
    A report on the creation of a new program to improve family medicine residents\u27 understanding, and quality of care, of anticoagulation patients. Patients requiring anticoagulation therapy pose unique issues requiring a systematic approach to their care, balancing the potential benefit from therapy with possible adverse events. Here, we describe a model that helps to standardize both the care received by patients on anticoagulation therapy as well as the training of family medicine residents caring for those patients. A team-based model of care (family medicine residents, clinical pharmacists, and nurses) is used to achieve the goals of improved care and education. Clinical pharmacists are used in concert with family medicine residents and attendings to assess patients\u27 medication profiles and help direct patient care and resident learning. Both the idea itself and the formal structure are presented in a model for possible adaptation to other program

    Using Mock Interviews to Evaluate an Interprofessional Education (IPE) Curriculum

    Get PDF
    The aim of this study was to evaluate the influence of targeted team care training in our institution’s interprofessional practice and education (IPE) program on medical and pharmacy students\u27 expression of knowledge and attitudes about team care as measured in a mock interview. Medical and Pharmacy students were recruited to participate in a 20-minute mock interview for an advanced placement position

    The over-pruning hypothesis of autism

    Get PDF
    This article outlines the over-pruning hypothesis of autism. The hypothesis originates in a neurocomputational model of the regressive sub-type (Thomas, Knowland & Karmiloff-Smith, 2011a,b). Here we develop a more general version of the over-pruning hypothesis to address heterogeneity in the timing of manifestation of ASD, including new computer simulations which can reconcile the different observed developmental trajectories (early onset, late onset, regression) via a single underlying atypical mechanism; and which show how unaffected siblings of individuals with ASD may differ from controls either by inheriting a milder version of the pathological mechanism or by co-inheriting the risk factors without the pathological mechanism. The proposed atypical mechanism involves overly aggressive synaptic pruning in infancy and early childhood, an exaggeration of a normal phase of brain development. We show how the hypothesis generates novel predictions that differ from existing theories, including that (1) the first few months of development in ASD will be indistinguishable from typical, and (2) the earliest atypicalities in ASD will be sensory and motor rather than social. Both predictions gain cautious support from emerging longitudinal studies of infants at risk of ASD. We review evidence consistent with the over-pruning hypothesis, its relation to other current theories (including C. Frith’s under-pruning proposal; C. Frith, 2003, 2004), as well as inconsistent data and current limitations. The hypothesis situates causal accounts of ASD within a framework of protective and risk factors (Newschaffer et al., 2012); clarifies different versions of the broader autism phenotype (i.e., the implication of observed similarities between individuals with autism and their family members); and integrates data from multiple disciplines, including behavioural studies, neuroscience studies, genetics, and intervention studies

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    Optimization of the optical array geometry for IceCube-Gen2

    Get PDF

    Concept Study of a Radio Array Embedded in a Deep Gen2-like Optical Array

    Get PDF

    Sensitivity studies for the IceCube-Gen2 radio array

    Get PDF

    Simulation study for the future IceCube-Gen2 surface array

    Get PDF

    The Surface Array planned for IceCube-Gen2

    Get PDF
    IceCube-Gen2, the extension of the IceCube Neutrino Observatory, will feature three main components: an optical array in the deep ice, a large-scale radio array in the shallow ice and firn, and a surface detector above the optical array. Thus, IceCube-Gen2 will not only be an excellent detector for PeV neutrinos, but also constitutes a unique setup for the measurement of cosmic-ray air showers, where the electromagnetic component and low-energy muons are measured at the surface and high-energy muons are measured in the ice. As for ongoing enhancement of IceCube’s current surface array, IceTop, we foresee a combination of elevated scintillation and radio detectors for the Gen2 surface array, aiming at high measurement accuracy for air showers. The science goals are manifold: The in-situ measurement of the cosmic-ray flux and mass composition, as well as more thorough tests of hadronic interaction models, will improve the understanding of muons and atmospheric neutrinos detected in the ice, in particular, regarding prompt muons. Moreover, the surface array provides a cosmic-ray veto for the in-ice detector and contributes to the calibration of the optical and radio arrays. Last but not least, the surface array will make major contributions to cosmic-ray science in the energy range of the transition from Galactic to extragalactic sources. The increased sensitivities for photons and for cosmic-ray anisotropies at multi-PeV energies provide a chance to solve the puzzle of the origin of the most energetic Galactic cosmic rays and will serve IceCube’s multimessenger mission
    corecore