131 research outputs found

    Temporomandibular joint loads in subjects with and without disc displacement

    Get PDF
    The likelihood of development of degenerative joint disease (DJD) of the temporomandibular joint (TMJ) is related to the integrity of the TMJ disc. Predilection for mechanical failure of the TMJ disc may reflect inter-individual differences in TMJ loads. Nine females and eight males in each of normal TMJ disc position and bilateral disc displacement diagnostic groups consented to participate in our study. Disc position was determined by bilateral magnetic resonance images of the joints. Three-dimensional (3D) anatomical geometry of each subject was used in a validated computer-assisted numerical model to calculate ipsilateral and contralateral TMJ loads for a range of biting positions (incisor, canine, molar) and angles (1–13). Each TMJ load was a resultant vector at the anterosuperior-most mediolateral midpoint on the condyle and characterized in terms of magnitude and 3D orientation. Analysis of variance (ANOVA) was used to test for effects of biting position and angle on TMJ loads. Mean TMJ loads in subjects with disc displacement were 9.5–69% higher than in subjects with normal disc position. During canine biting, TMJ loads in subjects with disc displacement were 43% (ipsilateral condyle,p=0.029) and 49% (contralateral condyle,p=0.015) higher on average than in subjects with normal disc position. Biting angle effects showed that laterally directed forces on the dentition produced ipsilateral joint loads, which on average were 69% higher (p=0.002) compared to individuals with normal TMJ disc position. The data reported here describe large differences in TMJ loads between individuals with disc displacement and normal disc position. The results support future investigations of inter-individual differences in joint mechanics as a variable in the development of DJD of the TMJ

    How typhoons trigger turbidity currents in submarine canyons

    Get PDF
    Intense turbidity currents occur in the Malaylay Submarine Canyon off the northern coast of Mindoro Island in the Philippines. They start in very shallow waters at the shelf break and reach deeper waters where a gas pipeline is located. The pipeline was displaced by a turbidity current in 2006 and its rock berm damaged by another 10 years later. Here we propose that they are triggered near the mouth of the Malaylay and Baco rivers by direct sediment resuspension in the shallow shelf and transport to the canyon heads by typhoon-induced waves and currents. We show these rivers are unlikely to generate hyperpycnal flows and trigger turbidity currents by themselves. Characteristic signatures of turbidity currents, in the form of bed shear stress obtained by numerical simulations, match observed erosion/deposition and rock berm damage patterns recorded by repeat bathymetric surveys before and after typhoon Nock-ten in December 2016. Our analysis predicts a larger turbidity current triggered by typhoon Durian in 2006; and reveals the reason for the lack of any significant turbidity current associated with typhoon Melor in December 2015. Key factors to assess turbidity current initiation are typhoon proximity, strength, and synchronicity of typhoon induced waves and currents. Using data from a 66-year hindcast we estimate a ~8-year return period of typhoons with capacity to trigger large turbidity currents

    Social and cultural origins of motivations to volunteer a comparison of university students in six countries

    Get PDF
    Although participation in volunteering and motivations to volunteer (MTV) have received substantial attention on the national level, particularly in the US, few studies have compared and explained these issues across cultural and political contexts. This study compares how two theoretical perspectives, social origins theory and signalling theory, explain variations in MTV across different countries. The study analyses responses from a sample of 5794 students from six countries representing distinct institutional contexts. The findings provide strong support for signalling theory but less so for social origins theory. The article concludes that volunteering is a personal decision and thus is influenced more at the individual level but is also impacted to some degree by macro-level societal forces

    A causative relationship exists between eosinophils and the development of allergic pulmonary pathologies in the mouse

    Get PDF
    Asthma and mouse models of allergic respiratory inflammation are invariably associated with a pulmonary eosinophilia; however, this association has remained correlative. In this report, a causative relationship between eosinophils and allergen-provoked pathologies was established using eosinophil adoptive transfer. Eosinophils were transferred directly into the lungs of either naive or OVA-treated IL-5-/- mice. This strategy resulted in a pulmonary eosinophilia equivalent to that observed in OVA-treated wild-type animals. A concomitant consequence of this eosinophil transfer was an increase in Th2 bronchoalveolar lavage cytokine levels and the restoration of intracellular epithelial mucus in OVA-treated IL-5-/- mice equivalent to OVA-treated wild-type levels. Moreover, the transfer also resulted in the development of airway hyperresponsiveness. These pulmonary changes did not occur when eosinophils were transferred into naive IL-5-/- mice, eliminating nonspecific consequences of the eosinophil transfer as a possible explanation. Significantly, administration of OVA-treated IL-5-/- mice with GK1.5 (anti-CD4) Abs abolished the increases in mucus accumulation and airway hyperresponsiveness following adoptive transfer of eosinophils. Thus, CD4+ T cell-mediated inflammatory signals as well as signals derived from eosinophils are each necessary, yet alone insufficient, for the development of allergic pulmonary pathology. These data support an expanded view of T cell and eosinophil activities and suggest that eosinophil effector functions impinge directly on lung function

    Next-generation sequencing identifies the natural killer cell microRNA transcriptome

    Get PDF
    Natural killer (NK) cells are innate lymphocytes important for early host defense against infectious pathogens and surveillance against malignant transformation. Resting murine NK cells regulate the translation of effector molecule mRNAs (e.g., granzyme B, GzmB) through unclear molecular mechanisms. MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally regulate the translation of their mRNA targets, and are therefore candidates for mediating this control process. While the expression and importance of miRNAs in T and B lymphocytes have been established, little is known about miRNAs in NK cells. Here, we used two next-generation sequencing (NGS) platforms to define the miRNA transcriptomes of resting and cytokine-activated primary murine NK cells, with confirmation by quantitative real-time PCR (qRT-PCR) and microarrays. We delineate a bioinformatics analysis pipeline that identified 302 known and 21 novel mature miRNAs from sequences obtained from NK cell small RNA libraries. These miRNAs are expressed over a broad range and exhibit isomiR complexity, and a subset is differentially expressed following cytokine activation. Using these miRNA NGS data, miR-223 was identified as a mature miRNA present in resting NK cells with decreased expression following cytokine activation. Furthermore, we demonstrate that miR-223 specifically targets the 3′ untranslated region of murine GzmB in vitro, indicating that this miRNA may contribute to control of GzmB translation in resting NK cells. Thus, the sequenced NK cell miRNA transcriptome provides a valuable framework for further elucidation of miRNA expression and function in NK cell biology

    Recommendations for a national agenda to substantially reduce cervical cancer

    Get PDF
    PURPOSE: Prophylactic human papillomavirus (HPV) vaccines and new HPV screening tests, combined with traditional Pap test screening, provide an unprecedented opportunity to greatly reduce cervical cancer in the USA. Despite these advances, thousands of women continue to be diagnosed with and die of this highly preventable disease each year. This paper describes the initiatives and recommendations of national cervical cancer experts toward preventing and possibly eliminating this disease. METHODS: In May 2011, Cervical Cancer-Free America, a national initiative, convened a cervical cancer summit in Washington, DC. Over 120 experts from the public and private sector met to develop a national agenda for reducing cervical cancer morbidity and mortality in the USA. RESULTS: Summit participants evaluated four broad challenges to reducing cervical cancer: (1) low use of HPV vaccines, (2) low use of cervical cancer screening, (3) screening errors, and (4) lack of continuity of care for women diagnosed with cervical cancer. The summit offered 12 concrete recommendations to guide future national and local efforts toward this goal. CONCLUSIONS: Cervical cancer incidence and mortality can be greatly reduced by better deploying existing methods and systems. The challenge lies in ensuring that the array of available prevention options are accessible and utilized by all age-appropriate women-particularly minority and underserved women who are disproportionately affected by this disease. The consensus was that cervical cancer can be greatly reduced and that prevention efforts can lead the way towards a dramatic reduction in this preventable disease in our country

    Effects of the Histone Deacetylase Inhibitor Valproic Acid on Human Pericytes In Vitro

    Get PDF
    Microvascular pericytes are of key importance in neoformation of blood vessels, in stabilization of newly formed vessels as well as maintenance of angiostasis in resting tissues. Furthermore, pericytes are capable of differentiating into pro-fibrotic collagen type I producing fibroblasts. The present study investigates the effects of the histone deacetylase (HDAC) inhibitor valproic acid (VPA) on pericyte proliferation, cell viability, migration and differentiation. The results show that HDAC inhibition through exposure of pericytes to VPA in vitro causes the inhibition of pericyte proliferation and migration with no effect on cell viability. Pericyte exposure to the potent HDAC inhibitor Trichostatin A caused similar effects on pericyte proliferation, migration and cell viability. HDAC inhibition also inhibited pericyte differentiation into collagen type I producing fibroblasts. Given the importance of pericytes in blood vessel biology a qPCR array focusing on the expression of mRNAs coding for proteins that regulate angiogenesis was performed. The results showed that HDAC inhibition promoted transcription of genes involved in vessel stabilization/maturation in human microvascular pericytes. The present in vitro study demonstrates that VPA influences several aspects of microvascular pericyte biology and suggests an alternative mechanism by which HDAC inhibition affects blood vessels. The results raise the possibility that HDAC inhibition inhibits angiogenesis partly through promoting a pericyte phenotype associated with stabilization/maturation of blood vessels

    Reconstructing Asian faunal introductions to eastern Africa from multi-proxy biomolecular and archaeological datasets

    Get PDF
    Human-mediated biological exchange has had global social and ecological impacts. In subS-aharan Africa, several domestic and commensal animals were introduced from Asia in the pre-modern period; however, the timing and nature of these introductions remain contentious. One model supports introduction to the eastern African coast after the mid-first millennium CE, while another posits introduction dating back to 3000 BCE. These distinct scenarios have implications for understanding the emergence of long-distance maritime connectivity, and the ecological and economic impacts of introduced species. Resolution of this longstanding debate requires new efforts, given the lack of well-dated fauna from high-precision excavations, and ambiguous osteomorphological identifications. We analysed faunal remains from 22 eastern African sites spanning a wide geographic and chronological range, and applied biomolecular techniques to confirm identifications of two Asian taxa: domestic chicken (Gallus gallus) and black rat (Rattus rattus). Our approach included ancient DNA (aDNA) analysis aided by BLAST-based bioinformatics, Zooarchaeology by Mass Spectrometry (ZooMS) collagen fingerprinting, and direct AMS (accelerator mass spectrometry) radiocarbon dating. Our results support a late, mid-first millennium CE introduction of these species. We discuss the implications of our findings for models of biological exchange, and emphasize the applicability of our approach to tropical areas with poor bone preservation

    Consensus guidelines for the use and interpretation of angiogenesis assays

    Get PDF
    The formation of new blood vessels, or angiogenesis, is a complex process that plays important roles in growth and development, tissue and organ regeneration, as well as numerous pathological conditions. Angiogenesis undergoes multiple discrete steps that can be individually evaluated and quantified by a large number of bioassays. These independent assessments hold advantages but also have limitations. This article describes in vivo, ex vivo, and in vitro bioassays that are available for the evaluation of angiogenesis and highlights critical aspects that are relevant for their execution and proper interpretation. As such, this collaborative work is the first edition of consensus guidelines on angiogenesis bioassays to serve for current and future reference
    corecore