2,132 research outputs found

    Characterization, crystallization and preliminary X-ray investigation of glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus.

    Get PDF
    Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tRecombinant Sulfolobus solfataricus glyceraldehyde-3-phosphate dehydrogenase has been purified and found to be a tetramer of 148 kDa. The enzyme shows dual cofactor specificity and uses NADP+ in preference to NAD+. The sequence has been compared with other GAPDH proteins including those from other archaeal sources. The purified protein has been crystallized from ammonium sulfate to produce crystals that diffract to 2.4 A with a space group of P43212 or P41212. A native data set has been collected to 2.4 A using synchrotron radiation and cryocooling.European UnionBBSR

    Parsimony vs predictive and functional performance of three stomatal optimization principles in a big-leaf framework

    Get PDF
    Stomatal optimization models can improve estimates of water and carbon fluxes with relatively low complexity, yet there is no consensus on which formulations are most appropriate for ecosystem-scale applications. We implemented three existing analytical equations for stomatal conductance, based on different water penalty functions, in a big-leaf comparison framework, and determined which optimization principles were most consistent with flux tower observations from different biomes. We used information theory to dissect controls of soil water supply and atmospheric demand on evapotranspiration in wet to dry conditions and to quantify missing or inadequate information in model variants. We ranked stomatal optimization principles based on parameter uncertainty, parsimony, predictive accuracy, and functional accuracy of the interactions between soil moisture, vapor pressure deficit, and evapotranspiration. Performance was high for all model variants. Water penalty functions with explicit representation of plant hydraulics did not substantially improve predictive or functional accuracy of ecosystem-scale evapotranspiration estimates, and parameterizations were more uncertain, despite having physiological underpinnings at the plant level. Stomatal optimization based on water use efficiency thus provided more information about ecosystem-scale evapotranspiration compared to those based on xylem vulnerability and proved more useful in improving ecosystem-scale models with less complexity

    Restrictive ID policies: implications for health equity

    Get PDF
    We wish to thank Synod Community Services for their critical work to develop, support, and implement a local government-issued ID in Washtenaw County, MI. We also thank Yousef Rabhi of the Michigan House of Representatives and Janelle Fa'aola of the Washtenaw ID Task Force, Lawrence Kestenbaum of the Washtenaw County Clerk's Office, Sherriff Jerry Clayton of the Washtenaw County Sherriff's Office, and the Washtenaw ID Task Force for their tireless commitment to developing and supporting the successful implementation of the Washtenaw ID. Additionally, we thank Vicenta Vargas and Skye Hillier for their contributions to the Washtenaw ID evaluation. We thank the Curtis Center for Research and Evaluation at the University of Michigan School of Social Work, the National Center for Institutional Diversity at the University of Michigan, and the University of California-Irvine Department of Chicano/Latino Studies and Program in Public Health for their support of the Washtenaw ID community-academic research partnership. Finally, we thank the reviewers for their helpful comments on earlier drafts of this manuscript. (Curtis Center for Research and Evaluation at the University of Michigan School of Social Work; National Center for Institutional Diversity at the University of Michigan; University of California-Irvine Department of Chicano/Latino Studies; Program in Public Health)https://link.springer.com/content/pdf/10.1007/s10903-017-0579-3.pdfPublished versio

    Paediatric radiology seen from Africa. Part I: providing diagnostic imaging to a young population

    Get PDF
    Article approval pendingPaediatric radiology requires dedicated equipment, specific precautions related to ionising radiation, and specialist knowledge. Developing countries face difficulties in providing adequate imaging services for children. In many African countries, children represent an increasing proportion of the population, and additional challenges follow from extreme living conditions, poverty, lack of parental care, and exposure to tuberculosis, HIV, pneumonia, diarrhoea and violent trauma. Imaging plays a critical role in the treatment of these children, but is expensive and difficult to provide. The World Health Organisation initiatives, of which the World Health Imaging System for Radiography (WHIS-RAD) unit is one result, needs to expand into other areas such as the provision of maintenance servicing. New initiatives by groups such as Rotary and the World Health Imaging Alliance to install WHIS-RAD units in developing countries and provide digital solutions, need support. Paediatric radiologists are needed to offer their services for reporting, consultation and quality assurance for free by way of teleradiology. Societies for paediatric radiology are needed to focus on providing a volunteer teleradiology reporting group, information on child safety for basic imaging, guidelines for investigations specific to the disease spectrum, and solutions for optimising imaging in children

    Exoplanet phase curves: observations and theory

    Full text link
    Phase curves are the best technique to probe the three dimensional structure of exoplanets' atmospheres. In this chapter we first review current exoplanets phase curve observations and the particular challenges they face. We then describe the different physical mechanisms shaping the atmospheric phase curves of highly irradiated tidally locked exoplanets. Finally, we discuss the potential for future missions to further advance our understanding of these new worlds.Comment: Fig.5 has been updated. Table 1 and corresponding figures have been updated with new values for WASP-103b and WASP-18b. Contains a table sumarizing phase curve observation

    BtubA-BtubB Heterodimer Is an Essential Intermediate in Protofilament Assembly

    Get PDF
    BACKGROUND:BtubA and BtubB are two tubulin-like genes found in the bacterium Prosthecobacter. Our work and a previous crystal structure suggest that BtubB corresponds to alpha-tubulin and BtubA to beta-tubulin. A 1:1 mixture of the two proteins assembles into tubulin-like protofilaments, which further aggregate into pairs and bundles. The proteins also form a BtubA/B heterodimer, which appears to be a repeating subunit in the protofilament. METHODOLOGY/PRINCIPAL FINDINGS:We have designed point mutations to disrupt the longitudinal interfaces bonding subunits into protofilaments. The mutants are in two classes, within dimers and between dimers. We have characterized one mutant of each class for BtubA and BtubB. When mixed 1:1 with a wild type partner, none of the mutants were capable of assembly. An excess of between-dimer mutants could depolymerize preformed wild type polymers, while within-dimer mutants had no activity. CONCLUSIONS:An essential first step in assembly of BtubA + BtubB is formation of a heterodimer. An excess of between-dimer mutants depolymerize wild type BtubA/B by sequestering the partner wild type subunit into inactive dimers. Within-dimer mutants cannot form dimers and have no activity

    Mapping gene associations in human mitochondria using clinical disease phenotypes

    Get PDF
    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes

    Secondary omental and pectoralis major double flap reconstruction following aggressive sternectomy for deep sternal wound infections after cardiac surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deep sternal wound infection after cardiac surgery carries high morbidity and mortality. Our strategy for deep sternal wound infection is aggressive strenal debridement followed by vacuum-assisted closure (VAC) therapy and omental-muscle flap reconstrucion. We describe this strategy and examine the outcome and long-term quality of life (QOL) it achieves.</p> <p>Methods</p> <p>We retrospectively examined 16 patients treated for deep sternal wound infection between 2001 and 2007. The most recent nine patients were treated with total sternal resection followed by VAC therapy and secondary closure with omental-muscle flap reconstruction (recent group); whereas the former seven patients were treated with sternal preservation if possible, without VAC therapy, and four of these patients underwent primary closure (former group). We assessed long-term quality of life after DSWI by using the Short Form 36-Item Health Survey, Version 2 (SF36v2).</p> <p>Results</p> <p>One patient died and four required further surgery for recurrence of deep sternal wound infection in the former group. The duration of treatment for deep sternal wound infection in the recent group was significantly shorter than that in previous group (63.4 ± 54.1 days vs. 120.0 ± 31.8 days, respectively; p = 0.039). Despite aggressive sternal resection, the QOL of patients treated for DSWI was only minimally compromised compared with age-, sex-, surgical procedures-matched patients without deep sternal wound infection.</p> <p>Conclusions</p> <p>Aggressive sternal debridement followed by VAC therapy and secondary closure with an omental-muscle flap is effective for deep sternal wound infection. In this series, it resulted in a lower incidence of recurrent infection, shorter hospitalization, and it did not compromise long-term QOL greatly.</p

    Strong interface-induced spin-orbit coupling in graphene on WS2

    Get PDF
    Interfacial interactions allow the electronic properties of graphene to be modified, as recently demonstrated by the appearance of satellite Dirac cones in the band structure of graphene on hexagonal boron nitride (hBN) substrates. Ongoing research strives to explore interfacial interactions in a broader class of materials in order to engineer targeted electronic properties. Here we show that at an interface with a tungsten disulfide (WS2) substrate, the strength of the spin-orbit interaction (SOI) in graphene is very strongly enhanced. The induced SOI leads to a pronounced low-temperature weak anti-localization (WAL) effect, from which we determine the spin-relaxation time. We find that spin-relaxation time in graphene is two-to-three orders of magnitude smaller on WS2 than on SiO2 or hBN, and that it is comparable to the intervalley scattering time. To interpret our findings we have performed first-principle electronic structure calculations, which both confirm that carriers in graphene-on-WS2 experience a strong SOI and allow us to extract a spin-dependent low-energy effective Hamiltonian. Our analysis further shows that the use of WS2 substrates opens a possible new route to access topological states of matter in graphene-based systems.Comment: Originally submitted version in compliance with editorial guidelines. Final version with expanded discussion of the relation between theory and experiments to be published in Nature Communication
    • 

    corecore