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Abstract

Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To
date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical
phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-
phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here
we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes.
Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified
based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison
of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for
which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes
sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype
similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and
discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each
other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of
mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific
disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical
categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects
within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of
clinical diseases and associated genes.
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Introduction

Mitochondrial diseases are caused by an abnormal function of

mitochondria. They may be the result of spontaneous or inherited

mutations in the mitochondrial genome (mtDNA) or in nuclear

genes that code for mitochondrial components, but may also be

acquired secondary to adverse effects of drugs, infections, or other

environmental causes [1–3]. The mtDNA encodes only 13

proteins of the respiratory chain [4], while most of the estimated

1,500 mitochondrial proteins are nuclear-encoded [5]. Mitochon-

drial deficiencies often affect multiple tissues leading to multi-

system diseases that present with many phenotypic features. These

dysfunctions appear to be more prevalent in hereditary diseases

than previously anticipated [6–8] and have also been attributed to

the pathogenesis of common conditions associated with aging [3,9]

including neurodegenerative diseases [10], cardiovascular disor-

ders [11], diabetes mellitus [12], and several cancer types [13,14].

Medical case reports of specific gene defects have been crucial

to our understanding of clinical phenotypes. The list of

mitochondrial disease genes and case reports has grown rapidly,

while methods for defining and assaying clinical phenotypes are

still inadequate [15–17]. Accordingly, the accurate and systematic

comparison of clinical phenotypes associated with different disease

genes remains a major challenge. One limitation is the non-

standardized formats of such phenotypic data in the medical

literature and databases, which is difficult to overcome using

automated text mining [18,19]. An example are optic nerve

diseases for which multiple terms are found such as cranial nerve

II diseases, neural-optic lesion, optic disk disorder, and optic

atrophy. Higher-level phenome knowledgebases recently emerged

in an attempt to comprehensively index human phenotype data

[20–22]. The process of transforming descriptions of medical

diagnoses and procedures into universal computer-readable

medical code numbers involves manual reviews and annotations
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of full-text articles [17]. As with other knowledgebases [23,24],

catalogs of clinical phenotypes are set within the context of the

existing literature, but are also limited by the inherent problems of

working with an evolving literature.

In this study, we catalogued detailed information on clinical

disease phenotypes of known mitochondrial gene defects that were

stored in a phenome knowledgebase. We then developed methods

to analyze the clinical phenotype information, to determine

associations of genes and diseases, and to compare different disease

genes based on their associated phenotypes. This approach was

used to predict disease gene similarities, which showed positive

correlations to their functional interactions. Our analysis of a

functional interaction network of mitochondrial genes revealed

distinct properties for disease and non-disease genes, which we

utilized to predict new disease candidate genes. Our knowledge-

base (www.mitophenome.org) represents a new resource for

studying links between disorders and genes. This can be integrated

with a variety of systems approaches [25] with the goal of

identifying disease gene variants in the individuals that carry them.

Results

Annotation of mitochondrial genes and diseases
We identified 174 nuclear-encoded mitochondrial genes (Table

S1) associated with 191 diseases in the Online Mendelian

Inheritance in Man (OMIM) database [26]. In order to

characterize these disorders in detail, we manually searched the

PubMed literature for their phenotypic features such as clinical

signs and symptoms, biochemical and clinical laboratory tests, and

neurological imaging findings. Our annotations consisted of three

steps that included the collection, definition, and classification of

phenotypic features for each disease gene. Importantly, we

individually matched the phenotypic features with standardized

descriptors in the Medical Subject Headings (MeSH) database

[27]. Within the hierarchical MeSH ontology, we localized the

individual feature position and then identified, for each feature,

the directly related parent descriptor or hypernym feature. Using

this approach, we reviewed 1,636 full-text articles reporting defects

or deficiencies in the 174 disease genes and individually extracted

phenotypic features for each gene. We then matched features with

MeSH descriptors and identified their hypernyms, which gener-

ated 502 features hierarchically classified within the mitochondrial

phenotype ontology (Table S2). At its root, the ontology has

fourteen features corresponding to fourteen major clinical

categories (CC) such as cardiovascular diseases or neurological

diseases. These CC are used to discriminate the more specific

features in each group: for example arrhythmia in the cardiovas-

cular CC and seizures in the neurologic CC. A subset of the

features in our phenotype ontology is listed in Table 1.

Clinical categories (CC) of mitochondrial disorders
A categorical breakdown of the 502 features in their fourteen

CC is shown in the inner circle of Figure 1A. While most CC

were comprised of more than twenty individual features, the

neurologic and metabolic CC contained the largest fraction of

features (18.5% and 14.3%, respectively). We then explored the

overall characteristics of mitochondrial phenotypes across all gene

defects. We had annotated a total of 9,407 gene-feature pairs

(Table S3) that included, for each of the 174 disease genes,

features identified through our literature search and hypernyms to

these features assigned through integration with the phenotype

ontology (see methods). A relative breakdown of the fourteen CC

across the 9,407 gene-feature pairs is shown in the outer circle of

Figure 1A. This analysis revealed CC patterns similar to the

categorical distribution above, with neurological (33.3%) and

metabolic (13.0%) features most prominently represented. To-

gether with the third largest CC of gastrointestinal (8.6%) diseases,

these three CC account for more than half of all features in all

gene-feature pairs studied. In comparison, the oncologic and

endocrinologic CC contained relative large numbers of features,

but these categories were associated with fewer genes and are less

frequently observed in mitochondrial disorders.

The distribution of phenotypes within CC is largely consistent

with the tissue distribution of energy expenditure in the resting

state, or basal metabolic rate (BMR), with brain contributing to

the highest proportion of the BMR (90% in newborns, 60% in

infants, and 25% in adults) [28], followed by liver (20–25% BMR)

and resting muscle (10–25% BMR). Mitochondria provide most of

the body’s energy [3], and measurements of mitochondrial

respiration have shown that brain tissue contains more active

respiratory chain complexes than liver, heart, or muscle [29].

Thus, our results showing a higher proportion of neurological,

metabolic, and gastrointestinal (e.g. liver diseases) features

positively correlate to BMR and respiratory-chain activities. A

related analysis of genes associated with the fourteen CC confirms

this observation (Figure 1B). While most genes were associated

with the neurologic, metabolic or gastrointestinal CC, these genes

also caused more features within these CC. For example, 154

genes were associated with the neurological CC with each gene

causing on average 20.3 neurological features. Although mito-

chondrial defects affect many cellular processes [5], the phenotype

patterns predominantly represent deficiencies in energy metabo-

lism with the nervous system being most susceptible. Like the gene-

expression patterns in the study of human phenotypic diversity

[30], CC patterns may aid to characterize and distinguish

phenotype groups such as mitochondrial disorders.

Clinical phenotype similarities between mitochondrial
disease genes

Inherited diseases often present with multiple phenotypic

features. The presence or absence of specific features is

Author Summary

An important prerequisite for successful disease gene
identification is the assessment, with minimal ambiguity,
of a particular clinical trait or phenotype. Even with years
of experience, recognizing and diagnosing mitochondrial
diseases is still a major hurdle in clinical medicine.
Computational tools supporting clinicians not only help
identify affected individuals, but also guide studies of the
genetic and biological causes of these disorders. In this
study we dissect and categorize individual clinical features,
signs, and symptoms of 174 disease genes and then
identify gene similarities based on their shared phenotypic
features. We demonstrate that genes sharing more similar
phenotypes have a stronger tendency for functional
interactions, proving the usefulness of phenotype similar-
ity values in disease gene network analysis. Our study of a
large functional network of mitochondrial genes revealed
distinct properties that differentiate disease and non-
disease genes. Disease genes showed a lower average
total connectivity but a tendency to interact with each
other; a finding that we used to predict 168 high-
probability disease candidates. The accompanying knowl-
edgebase allows for easy navigation between disease and
gene information. We believe the open source format will
support and encourage further research that will benefit
this and other human phenome projects.

Mitochondrial Disease Phenotypes
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Table 1. Phenotypic features of human mitochondrial diseases.

1. Cardiovascular (110) 7. Immunologic (78) Neuromuscular-manifestations (129)

Arrhythmia (38) Autoimmune-diseases (2) Paralysis-Paresis (39)

Cardiomyopathy (44) Immune-deficiency (7) Reflexes-abnormal (78)

Cardiorespiratory-arrest (81) Infections (76) Hearing-disorders (30)

Hypertension (20) 8. Metabolic (143) Voice-disorders (11)

Hypotension (19) Acidosis (87) Stroke-like-episodes (10)

Myocardial-ischemia (6) Reye-like-symptoms (15) Developmental-delay (111)

2. Dermatologic (56) Dyslipidemias (14) Polyneuropathies (37)

Dermatitis (7) Diabetes-mellitus (18) Sleep-disorders (11)

Hair-diseases (15) Hyperglycemia (12) 11. Oncologic (29)

Pigmentation-disorders (11) Hyperinsulinism (5) Squamous-cell-neoplasms (4)

Hyperhidrosis (15) Hypoglycemia (52) Neuroendocrine-tumors (6)

Paleness (22) Hyperammonemia (40) Paraganglioma (3)

3. Endocrinologic (40) Hyperbilirubinemia (23) Leukemia-Lymphoma (9)

Adrenal-gland-diseases (14) Hemochromatosis (11) Breast-neoplasms (5)

Adrenal-insufficiency (9) Aminoacid-levels-abnormal (47) Colorectal-neoplasms (4)

Adrenocortical-hyperfunction (7) Water-electrolyte-imbalance (49) Hepatocellular-carcinoma (7)

Gonadal-disorders (23) Obesity (8) Leiomyoma (4)

Sex-differentiation-disorders (12) Fatty-acids-abnormal (21) Prostatic-neoplasms (4)

Parathyroid-diseases (5) Organic-acids-abnormal (69) Renal-cell-carcinoma (4)

Pituitary-diseases (10) Dicarboxylic-aciduria (20) 12. Ophthalmologic (87)

Thyroid-diseases (18) 9. Musculosceletal (95) Blepharoptosis (20)

4. Gastrointestinal (132) Osteoporosis (8) Cataract (15)

Cholestasis (16) Spinal-diseases (25) Pathologic-nystagmus (38)

Deglutition-disorders (29) Pathological-fractures (9) Ophthalmoplegia (15)

Gastroenteritis (28) Foot-deformities (20) Optic-nerve-diseases (34)

Intestinal-obstruction (13) Joint-diseases (18) Retinal-diseases (27)

Gastrointestinal-hemorrhage (9) Muscular-diseases (38) Color-vision-defects (7)

Liver-diseases (79) Rhabdomyolysis (8) 13. Psychiatric (51)

Fatty-liver (34) Microcephaly (39) Aggression (15)

Pancreatitis (9) 10. Neurologic (154) Feeding-behavior (8)

Abdominal-pain (31) Brain-diseases (135) Anxiety-disorders (18)

Feeding-difficulties (67) Intracranial-hemorrhages (17) Dementia (18)

Diarrhea (37) Seizures (97) Autistic-disorder (8)

Vomiting (80) Headache-disorders (21) Depressive-disorder (19)

5. Genitourinary (68) Leukoencephalopathy (39) Psychotic-disorders (20)

Infertility-male (7) Cerebellar-atrophy (28) Schizophrenia (8)

Hypospadias (6) Corpus-callosum-hypoplasia (18) 14. Respiratory (108)

Cystic-kidney-diseases (7) Choreatic-disorders (18) Hyperventilation (40)

Nephrocalcinosis (4) Dystonic-disorders (38) Respiratory-insufficiency (51)

Renal-insufficiency (30) Parkinsonian-disorders (12) Asthma (8)

Urination-disorders (12) Tremor (36) Pneumonia (40)

Menstruation-disturbances (9) Spinal-cord-diseases (29) Pulmonary-edema (14)

Pregnancy-complications (15) Neurogenic-bladder (10) Miscellaneous (151)

6. Hematologic (75) Ataxia (54) Fever (52)

Anemia (34) Speech-disorders (41) Hypothermia (17)

Blood-coagulation-disorders (24) Consciousness-disorders (65) Exercise-intolerance (36)

Petechiae (4) Memory-disorders (13) Failure-to-thrive (62)

Blood-platelet-disorders (21) Mental-retardation (68) Growth-deficiency (54)

Blood-protein-disorders (20) Hallucinations (14) Dysmorphisms-abnormalities (39)

Bone-marrow-diseases (20) Psychomotor-agitation (34) Odors (10)

Mitochondrial Disease Phenotypes

PLoS Computational Biology | www.ploscompbiol.org 3 April 2009 | Volume 5 | Issue 4 | e1000374



traditionally used to distinguish between different disorders and

identify clinical traits [26]. It is hypothesized that phenotype

similarities of different disorders may indicate biological relation-

ships of the underlying genes [15,16]. Several systematic studies

have recently investigated genotype-phenotype associations in

human genetic disorders [19,31,32]. These approaches utilized

automated text mining to extract phenotype information, while

noting that currently available text formats and databases were not

designed as structured resources for human phenotype analysis

[19]. Another study utilized disorder terms from OMIM’s Morbid

map and manually annotated each disorder into one of 22

disorder classes [33], which are comparable to our CC. Notably,

the Morbid map terms represent only a small fraction of the

phenotype information of a clinical disorder and genes with

identical terms may cause phenotypic features from different CC.

In order to explore associations of genes and features in

mitochondrial diseases, we utilized our manually annotated

9,407 gene-feature pairs (Table S3). Evidence for each gene-

feature association is derived from one or more of 1,636 full-text

articles, where each article is linked to a PubMed unique identifier

(PMID). Using the PMID we computed the association ratio for

each gene-feature pair. This ratio represents the number of PMID

reporting a specific feature for a specific gene out of all PMID

annotated for this gene. In addition, we determined the association

ratios of pairs of genes linked to the same feature (see Methods).

The integration of association ratios for all features related to a

gene pair enabled the prediction of quantitative phenotypic

associations (QPA). Thus, QPA are a quantitative measure of

phenotype similarity of disease genes causing one or more identical

phenotypic feature.

Correlation of phenotypic associations and gene
functional interactions

We then compared disease genes with QPA and functional

interactions, in order to explore the hypothesis of phenotypic

similarities in functionally related genes [15,16]. We identified

1,928 gene pairs (n = 139 genes) from a recent study with

Likelihood Ratios (LR) for gene functional interactions [34], and

for which we had predicted QPA (Table S4). Using rank

correlation, we detected positive associations with significant

confidence of QPA and LR for these disease gene pairs (Kendall:

p = 4.67e-7; Spearman: p = 3.72e-7). The results indicated that

genes with stronger evidence for functional interaction (higher LR)

displayed greater similarities in their associated disease phenotypes

(higher QPA). To select gene pairs with the highest correlation of

LR and QPA, we applied hierarchical clustering and identified

groups of gene pairs with higher to lower levels of association (see

Methods). In addition, we compared the 1,928 gene pairs with

both LR and QPA to pairs predicted by only one method.

Hypothesis testing revealed that these pairs showed on average

higher values for LR (p = 6.86e-10) and QPA (p = 0.029) than

pairs predicted by only one method (LR pairs only n = 82; QPA

pairs only n = 26,010). Thus, LR and QPA in combination could

be helpful in the analysis of disease gene associations.

In our next analysis we identified 39 disease genes encoding

components of seven mitochondrial protein complexes and two

metabolic pathways, representing nine functional modules (Table
S4). For each gene within a given module, we calculated the QPA

average relative to all other genes in the module (Figure 2A).

While genes within some modules were associated with similar

disease phenotypes (e.g. RCC1, RCC4), other modules appeared

phenotypically more diverse (e.g. BCKDH, TCA). We then

compared QPA of gene pairs within modules (n = 262 pairs) to

pairs outside modules (n = 27,676 pairs). This analysis revealed a

higher average phenotype similarity for gene pairs within versus

outside the nine modules (p = 2.64e-5). We found a comparable

result in the analysis of gene functional interactions, with on

average higher LR for gene pairs within (n = 182) versus pairs

outside these modules (n = 1,828; p = 1.86e-35). In summary, we

identified positive correlations of functional (LR) and phenotypic

(QPA) associations for many disease genes, with the most

prominent genotype-phenotype relationships in protein complexes

(Figure 2B). These results support findings of a recent study that

utilized automated text mining in OMIM to identify phenotypic

similarities within protein complexes [32]. However, it should be

noted that OMIM often combines genes into a single disease

record, if they encode subunits of the same protein complex (e.g.

BCKDH - Maple syrup urine disease, #248600; GCC - Glycine

encephalopathy, #605899). Potential circular reasoning in

correlating phenotypes and complexes could be reduced by

individual disease gene annotations. While statistically very

significant, the genotype-phenotype correlation values observed

in this and other studies are still rather small [35]. Possible

contributing factors are the imperfect information about gene-

gene and gene-disease associations and the environment.

Functional interactions of nuclear-encoded
mitochondrial genes

We then expanded our analysis and identified functional

interactions for 162 disease genes (DG) to 4,577 candidate genes

(CG) from a recent study [34]. As for the DG, we also extracted all

binary functional interactions for each CG in order to account for

all genome-wide interactions of all 4,739 genes studied (Table
S5). Of the CG, 531 genes had disease associations in OMIM [26]

and we consequently labeled those as DG. We recorded in total

more than 1.9 million gene interactions that included interactions

between disease genes (DG-DG), disease and candidate genes

(DG-CG, CG-DG), and candidate genes (CG-CG). We first

focused on the mitochondrial gene network and identified a set of

495 mitochondrial CG through data integration of two recent

studies [5,36]. These studies combined had predicted 1,200

human mitochondrial genes (Table S6). Our analysis of

functional interactions of all mitochondrial CG (495) and DG

(162) showed the following results: i. the total number of

Leukocyte-disorders (25) Irritability (39) RCC-deficiencies (42)

Lymphatic-diseases (8) Lethargy (69) Vitamin-responsive (24)

The 144 features are selected from a total of 502 features (Table S2) and are caused by defects in 174 nuclear-encoded mitochondrial genes. Every feature is associated
with the number of genes shown in parentheses. The hierarchical structure of features within the phenotype ontology was established using standardized MeSH
descriptors (not shown). The fourteen CC in bold serve as headers for features within them. Unassigned features are grouped under ‘Miscellaneous’.
doi:10.1371/journal.pcbi.1000374.t001

Table 1. cont.
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interactions (i[all-genes]), which is recorded to all human genes,

was higher for CG than for DG (p = 7.93e-6); ii. the relative

number of DG interactions (i[disease-genes]/i[all-genes]), which

was recorded to all known human DG, was higher for DG than for

CG (p = 6.37e-7); and iii. the relative number of interactions to

human orthologs of mouse (i[mouse-essential]/i[all-genes]) and

yeast (i[yeast-essential]/i[all-genes]) essential genes [33,37] was

higher for the DG than the CG (mouse p = 1.72e-4; yeast

p = 0.013). These results indicated that mitochondrial CG and DG

can be distinguished based on functional interaction patterns.

In a related analysis, we compared the functional interactions of

DG (493) and CG (3551) located outside the mitochondrial

organelle (Table 2), which showed similar results (i., ii. and iii.) as

for the mitochondrial gene groups (see Methods for data).

However, the comparison of mitochondrial and non-mitochon-

drial genes revealed some surprises. The total number of

interactions for non-mitochondrial DG was higher than for

mitochondrial DG (p = 6.5e-29), and the number of interactions

for non-mitochondrial CG was higher than for mitochondrial CG

(p = 2.37e-93). Notably, the non-mitochondrial DG had on

average more interactions than the mitochondrial CG

(p = 1.87e-19). To further investigate these differences, we

literature-annotated detailed information on intracellular localiza-

tions of gene products (Table S1). Out of the 162 DG, 115 genes

had only evidence for mitochondrial localizations, while 47 DG

also localized to additional compartments (e.g. nucleus, cyto-

plasm). In addition, we identified 38 DG out of the 4,577 CG

(Table S6) with likely mitochondrial localizations [5,36]. These

38 DG (p = 0.06) and the 47 DG with multiple localizations

(p = 0.51) tended to have more interactions than the 115

mitochondria-only DG although both results were not statistically

significant. In summary, our analysis identified a higher average

connectivity for non-disease genes (CG) than for DG, which was

detected for both mitochondrial and non-mitochondrial genes,

and secondly, fewer functional interactions of mitochondrial than

for non-mitochondrial genes. These findings are supported by a

separate gene fraction analysis (Figure 3), where we studied the

number of interactions of genes in the different gene groups and

the distribution of these interactions over the whole network (see

Methods).

Candidate genes for mitochondrial disorders
In the last decade, several systematic studies have predicted

functional candidate genes in genomic linkage intervals of

mitochondrial diseases [38–42]. In principle, all genes from a

given interval are ‘‘benchmarked’’ against a database of annotated

proteins [5], and genes identical to or functionally similar to the

reference proteins are prioritized for mutational screens in affected

individuals. Here, we build on the success of these approaches and

predict new DG from a larger list of mitochondrial CG.

Considering the identified interaction differences of disease and

non-disease genes, we performed a supervised discriminant

analysis [43] of all 695 mitochondrial genes using the five

attributes of gene functional interactions (Table S5). Out of the

495 mitochondrial CG, 254 genes were predicted as DG with a

true positive rate of 80.2% based on the confirmed known DG. In

addition, 26 of the 38 DG with likely mitochondrial localization,

which we input-labeled as CG to serve as controls, were correctly

classified as DG. As an alternative tool, we ran a supervised

Bayesian network approach [44,45]. We first defined a training set

of 100 typical out of the 162 mitochondrial DG based on their

median of total gene interactions. Accordingly, 100 typical CG

were selected from the 495 mitochondrial CG. The network

analysis correctly identified 56.8% of the DG, 16 out of the 38

Figure 1. Distribution of clinical phenotypic features in
mitochondrial diseases. (A) The inner circle shows the distribution
of 502 phenotypic features among fourteen clinical categories (CC), plus
a ‘Miscellaneous’ category containing unassigned features. The
numbers show the fraction in % of all features in one CC compared
to all 502 features. The outer circle shows the distribution of features
related to CC within the 9,407 gene-feature pairs, with the frequency in
% of all features in one CC. (B) Number of genes with features in a
specific CC (y-axis) in correlation to the average number of CC-specific
features caused by these genes (x-axis). 154 genes caused neurological
features with an average of 20.2 neurological features per gene.
Phenotypically, most mitochondrial gene defects are related to
neurological, metabolic and gastrointestinal diseases.
doi:10.1371/journal.pcbi.1000374.g001

Mitochondrial Disease Phenotypes
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Figure 2. Phenotype similarity of genes related to mitochondrial protein complexes and pathways. (A) For each gene (black dots), the
average QPA (y-axis) to all other genes within a functional module was calculated. Red lines represent the median (50th percentile) of all QPA
averages within a module. Boxes indicate the 25th and 75th quartiles, with minimum and maximum data points as lines that extend from each end of

Mitochondrial Disease Phenotypes
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likely mitochondrial DG, and predicted 201 DG out of the 495

CG. Overlapping the two approaches predicted 168 novel

mitochondrial DG with an estimated true positive rate of 85.8%

(139 out of 162 DG) based on the correctly classified DG (Table
S8). The newly predicted disease candidates can be prioritized

from the larger set of functional CG in linkage intervals of

mitochondrial disorders (Table 3).

Discussion

The creation of human phenomic databases has been suggested

to systematically collect and analyze phenotypic information

[15,20–22]. In this study, we established a clinical phenotype

catalog of 174 mitochondrial disease genes (Table 1) that account

for ,10% of all known disease genes [26]. In order to define and

classify clinical phenotypes from 1,636 medical case reports, we

developed a terminologic system that is based on the hierarchical

MeSH ontology. Because automated text mining is limited in

annotating clinical disorders from the literature [18,19], our

mapping of ‘‘phenotypes to language’’ required the manual review

of each full-text article [17]. This classification of phenotypic

features for each gene allowed the comparison of disorders

between different disease genes (Figure 1). To measure clinical

phenotype similarity between disease genes, we calculated a

numerical value (QPA, quantitative phenotypic associations) that

takes into account all annotated gene-feature associations, the

overlap of features between two disease genes, and the frequency

of the shared feature across all genes. Thus, QPA are based on the

hypothesis that the value of a feature varies inversely with the

number of genes with which it is associated [16].

The analysis of disease gene pairs with QPA in comparison to

Likelihood Ratios (LR) for functional interactions [34] showed

positive correlations. Disease genes with stronger evidence for

functional interactions (higher LR) displayed greater similarities in

their clinical phenotypes (higher QPA). We discovered the most

prominent phenotypic similarities within mitochondrial protein

complexes (Figure 2) supporting previously predicted genotype-

phenotype associations of protein complexes [32]. However, we also

noted complexes with lower phenotypic similarities (e.g. BCKDH -

Maple syrup urine disease; GCC - Glycine encephalopathy)

highlighting the importance for individual gene inspection. Since

this analysis was limited to disease genes (DG), we were interested in

learning the properties of a larger network that included non-disease

candidate genes (CG). Utilizing the genome-wide study by Franke et

al. [34], we created a functional network of more than 1.9 million

gene interactions for 162 mitochondrial DG and 4,577 CG. Our

analysis identified significant differences in functional interactions for

DG and CG with a higher average connectivity for CG. This

difference was detected for both the mitochondrial and non-

mitochondrial gene groups (Table 2). In addition, while the total

number of DG interactions was similar for DG and CG, the relative

fraction of DG interactions (i[disease-genes]/i[all-genes]) was higher

for DG indicating that DG are more likely to interact with each other.

Previous smaller scale studies (,1006 fewer interactions) have

predicted intermediate and peripheral positions of DG in gene

functional networks with relatively fewer interactions than essential

genes [33,46]. Our results expand on this hypothesis showing that

essential and non-disease genes (CG) can be distinguished from DG

based on gene interaction patterns (Figure 3). Furthermore, we also

identified network properties differentiating mitochondrial from non-

the box. The grand mean of all modules (blue line) is the QPA average across all gene pairs of all nine modules, which was significantly higher than for
pairs outside modules (orange line). (B) Module gene relationships are predicted through functional (LR) and phenotypic (QPA) associations showing
the usefulness of phenotype similarity scores in disease gene network analysis. The edge colors are: Red – gene pairs with highest correlation of QPA
and LR; blue – gene pairs with lower QPA-LR correlation; orange and light blue – gene pairs with QPA only at higher (. = 0.4) and lower confidence
(,0.4), respectively (see Table S4 for data). Diseases caused by the six genes labeled ‘‘*’’ are known to respond to vitamin treatments (riboflavin,
thiamine, and pyridoxine). Abbreviations: AKDH, Alpha ketoglutarate dehydrogenase; BCKDH, Branched chain alpha keto acid dehydrogenase; GCC,
Glycine cleavage system; PDH, Pyruvate dehydrogenase; RCC, Respiratory chain complex; TCA, Tricarboxylic acid cycle; UC, Urea cycle.
doi:10.1371/journal.pcbi.1000374.g002

Table 2. Molecular interactions of mitochondria and non-mitochondria genes.

Gene group (genes/group) i[all-genes] i[disease-genes] i[mouse-essential] i[yeast-essential] i[mito-genes]

DG mitochondria (162) 120.91 (62) 26.14 (17.5) 13.23 (6) 20.56 (8.5) 42.24 (22)

CG mitochondria (495) 190.19 (114) 23.93 (14) 14.75 (6) 36.51 (23) 49.81(37)

DG non-mitochondria (493) 396.71 (154) 48.29 (22) 75.01 (17) 29.86 (19) 16.91 (8)

CG non-mitochondria (3551) 459.74 (275) 48.81 (21) 78.4 (21) 44.48 (34) 21.38 (10)

DG mito-only local. (115) 114.48 (67) 27.23 (19) 10.68 (6) 20.14 (9) 48.07 (25)

DG mito+other local. (47) 136.66 (56) 23.47 (14) 19.47 (7) 21.57 (6) 27.98 (18)

DG mito-predict local. (38) 192 (107) 31.18 (18) 22.03 (9) 36.13 (15) 45.76 (30)

Mouse essential genes (597) 598.22 (480) 69.64 (52) 116.7 (63) 39.94 (30) 17.31 (8)

Yeast essential genes (609) 354.96 (230) 33.51 (18) 40.51 (16) 66.15 (54) 37.03 (25)

The total 4,739 genes studied are separated into nine gene groups with the number of disease genes (DG) and candidate genes (CG) in each group in parenthesis (see
Table S5 for individual gene data). DG products with intracellular localization to only mitochondria (115 genes) and mitochondria-and-other-localizations (47 genes)
are subsets of the 162 mitochondrial DG. The human orthologs to mouse and yeast essential genes are subsets of all 4,739 genes. The five data columns show the
average number of interactions (i) of each group to all genes in the human genome (all-genes); all known human disease genes (disease-genes); all human orthologs of
essential mouse genes (mouse-essential); all human orthologs of essential yeast genes; and to all nuclear-encoded human mitochondrial genes (mito-genes). The
numbers in parenthesis show the median number of interactions for each group and attribute, respectively. The findings indicated distinct properties in gene molecular
interactions for DG and CG, as well as for mitochondria and non-mitochondria genes.
doi:10.1371/journal.pcbi.1000374.t002
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mitochondrial genes. Mitochondrial genes showed a lower average

connectivity, which may be due to the double-membrane structure of

the organelle limiting the detection of protein-protein interactions

[47]. However, the higher connectivity between mitochondrial genes

may relativize this problem. Future studies will help to answer the

question of the connectivity of mitochondrial genes and perhaps

genes of other cellular compartments as well.

In the final part of this study we utilized the discovered

interaction patterns to predict new mitochondrial DG. Using two

different approaches, we identified 168 non-disease genes that

resembled the characteristic interaction patterns of the 162

mitochondrial DG (estimated TP rate = 85.8%). If diseases are

linked to a genomic interval, the predicted DG can be prioritized

from a larger list of functional candidates for mutational screen in

affected individuals (Table 3). For example, the optic atrophy 2

(OPA2) linkage interval contains seven mitochondrial genes that

include three known DG of which HSD17B10 is associated with

optic atrophy [48–50], and three predicted DG of which two genes

(NDUFB11, TIMM17B) interact with mitochondrial DG causing

optic atrophy. Our phenome knowledgebase (www.mitophenome.

org) can also be applied to investigate disorders through gene

network association, in particular common conditions that are

caused by single gene defects in a subset of patients [51]. For

example, a search for Parkinson disease returns 12 mitochondrial

DG with interactions to 24 predicted DG (e.g. CCS, MECR,

PRKAR2B). Similarly, seizures and mental retardation, a

common combination of mitochondrial features, is caused by 59

DG that interact with 124 predicted DG. With the decreasing cost

of DNA sequencing, high-throughput screens linking phenotypes

with genotypes will further increase the accuracy of gene-feature

associations. To this end, easy navigation between clinical

phenotype and gene information promises to aid in the recognition

and diagnosis of mitochondrial disorders.

Methods

Mitochondrial disease genes
We identified 174 disease genes that encode proteins targeted to

mitochondria (Table S1). While most gene defects are inherited

as Mendelian traits; ACSL6, BAX, BCL2, ME2, MTHFD1,

PARL, PHB, UCP1, and UCP2 are disease susceptibility alleles;

DLST, OGDH, and PCK2 are disease-associated protein

deficiencies; and HTRA2, MTCP1, SLC25A16, and WWOX

cause disorders of unknown inheritance patterns. Table S1 has

also the annotations and PMID references (col. I) for intracellular

protein localizations and the 39 genes encoding components of

nine mitochondrial protein complexes and pathways (col. J).

Additional mitochondrial genes (Table S6) were identified

through integration of two studies [5,36] that had combined

predicted 1,200 mitochondrial genes.

Phenotypic feature annotation
For each of the 174 disease genes, we identified individual studies

and case reports describing a gene defect or deficiency and associated

phenotype information. Manual extraction and annotation probably

results in more specific and comprehensive data, with far fewer false-

Figure 3. Functional interactions of human mitochondrial genes. For each gene group, we calculated the fraction of genes (y-axis) that
interact with k other genes (x-axis). The gene group fractions were calculated for interactions to all human genes (A), all disease genes (B), and all
mitochondrial genes (C). The color codes of the gene groups with their respective regression line slopes and p-values (in parenthesis) are shown in
the table (D), with all results including correlation coefficients listed in Table S7. The fraction analysis of all gene interactions (A) showed a higher
network connectivity for non-disease genes (CG) than for disease genes (DG), as indicated by the larger absolute value of the negative DG regression
slope. In contrast, the connectivity to disease genes is relatively higher for DG than for CG suggesting a tendency for DG to interact with each other
(B). Human orthologs to mouse essential genes had the highest network connectivity, while the mitochondrial gene groups had the highest
tendency to interact to other mitochondrial genes (C).
doi:10.1371/journal.pcbi.1000374.g003
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positives than automated alternatives including natural language

processing and high-throughput screening [23]. Annotation of 1,636

full-text articles identified 461 phenotypic features that included the

definition of specific clinical terms for each feature. Features were

defined narrowly enough so that clinical diagnoses mapped to a single

feature. This process was essential as phenotype descriptions were not

consistent and often varied between different studies (see Table S3,

col. E). To define features, we utilized standardized descriptors in the

Medical Subject Headings (MeSH) database under the ‘‘Diseases’’

(coded under C), and the ‘‘Psychiatry and Psychology’’ (coded under

F) branches of the MeSH hierarchy used by the National Library of

Medicine (NLM). Individual matching of features with MeSH

descriptors revealed their positions in the hierarchical MeSH

ontology, together with the parent descriptor, the directly related

hypernym feature. For this analysis, we assigned each feature to only

one position in MeSH (e.g. diabetes mellitus has MeSH positions

C18.452.394.750 and C19.246; we chose the first category). We only

added hypernyms to the ontology that were directly related to at least

two features. Some features were added manually because they had

no clear match with MeSH descriptors. By integrating our 461

features with their 41 hypernyms, we identified 502 features that are

hierarchically classified within the mitochondrial phenotype ontology

(Table S2).

Gene-feature pair annotation
We used 1,636 full-text articles to manually annotate 6,361

gene-feature pairs, each of which was created from at least one

original PubMed article with a unique identifier (PMID). On

average, we identified 2.77 PMID per gene-feature pair, and 9.87

PMID per gene. Further, we assigned each gene-feature pair to a

unique OMIM disease record (e.g. 277900 for Wilson disease),

which described the disorder and was referenced in many articles.

We computationally integrated the 6,361 gene-feature pairs with

our phenotype ontology, resulting in 10,202 gene-feature pairs

(Table S3). This integration also assigned the PMID of each gene-

feature pair to its directly related hypernym gene-feature pair.

PMID assigned through ontology integration are labeled ‘‘#’’ (col.

G). Because gene-feature pairs may be associated with more than

one OMIM disease record, we consolidated the 10,202 gene-

feature pairs (and their PMID) into 9,407 unique pairs. For

example, the gene POLG is associated with ophthalmoplegia and

three OMIM disease records (157640, 258450, 607459).

Quantitative phenotypic associations (QPA)
The association ratio for each gene-feature pair is the fraction of

PMID reporting a specific feature for a specific gene out of the

total number of PMID annotated for that gene. The feature Fi

specific association ratio for gene pair A–B (rFi) was calculated as:

rFi~ PMID of gene A-feature Fið Þ=PMID for gene AÞ�

PMID for gene B-feature Fið Þ= PMID for gene Bð Þ

We considered the important weight wi of feature Fi for gene pair

Table 3. Prioritizing candidate genes for mitochondrial disorders.

Mitochondrial Disorder OMIM Phenotypic features Linkage interval
Size
(Mb)

Gene
loci

Mitochondrial genes marked
(*) if known, and (#) if
predicted disease gene

Optic atrophy 2, OPA2 311050 optic nerve disease DXS993-DXS991 14.5 352 MAOA*, ALAS2*, HSD17B10*;
MAOB#, NDUFB11#,
TIMM17B#; ARAF

Optic atrophy 4, OPA4 605293 optic nerve disease D18S34-D18S479 8.8 58 ATP5A1#, ACAA2#

Optic atrophy 5, OPA5 610708 optic nerve disease D22S1148-D22S283 10.4 189 HSCB#, PISD#, TXN2#, UCRC#,
TST#; NIPSNAP1, MTP18

Optic atrophy 6, OPA6 258500 optic nerve disease D8S1702-D8S1794 12.3 86 UQCRB*, DECR1* PPM2C*;
SLC7A13#; SLC7A13, FAM82B,
MTERFD1

Thyroid carcinoma,
nonmedullary, TCO

601992 thyroid neoplasms D19S884-D19S221 4.5 153 TIMM44#, NDUFA7#; MRPL4,
FDX1L, ECSIT

Paragangliomas 2, PGL2 601650 neuroendocrine tumors D11S956-PYGM 6.0 193 BAD#, PRDX5#, GLYAT#,
C11orf79#, COX8A#; MRPL16,
GLYATL1, GLYATL2

Multiple mitochon-drial
dysfunction syndrome, MMDFS

605711 muscle weakness, seizures, lethargy,
feeding difficulties,

D2S1337-D2S441 8.8 79 MDH1#; CCT4, ENSG00000119838

Cowchock syndrome; NADMR 310490 muscle weakness, mental retardation,
hearing disorder, polyneuropathy

DXS425-HPRT 13.7 152 NDUFA1*; AIFM1#, GLUD2#,
SLC25A14#

MEHMO syndrome 300148 mental retardation, seizures, obesity,
hypogonadism

DXS365-CYBB 15.9 139 GK*; ACOT9#, PDK3#; APOO

Gustavson syndrome, GUST 309555 mental retardation, optic nerve
disease, seizures, deafness

DXS458-DXS424 20.2 285 ACSL4*, TIMM8A*; MCART6,
SLC25A5, SLC25A43

Spastic paraplegia, SPG9 601162 paralysis-paresis, cataract, vomiting,
foot deformities

D10S564-D10S603 9.4 166 COX15*, ALDH18A1*; NDUFB8#,
GOT1#; C10orf65, SLC25A28

For each mitochondrial disorder (col.1), we identified the mitochondrial candidate genes (col.7) among all gene loci (col.6) in the genomic linkage interval (col.4). The
mitochondrial genes are further sorted into: (*) known disease genes with genes (in bold) causing phenotypic features (col.3) similar to features linked to the disease
interval; and (#) predicted disease genes with genes (in bold) that interact to known disease genes causing features similar to the disease interval features. For
completeness, the unlabeled mitochondrial genes are not known or predicted disease genes.
doi:10.1371/journal.pcbi.1000374.t003
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A–B as:

wi~log N=df ið Þ� PMID for gene A-feature Fið Þ=

max PMID for feature Fi in one gene½ �ð Þ�

PMID for gene B-feature Fið Þ=

max PMID for feature Fi in one gene½ �ð Þ

where N is the total number of genes (174) and df_i is the

document frequency of feature Fi in all genes, which is related to

the Inverse Document Frequency (IDF). IDF reflects the

hypothesis that the value of a feature varies inversely with the

number of genes in which it occurs [16]. To adjust for different

PMID counts for a feature in different genes, we set a denominator

as the maximum number of PMID in one gene associated with this

feature. QPA integrated the association ratios (ri) in all features Fi

(i = 1, 2, 3, …, I) for gene pair A–B through weights of wi_max

which was calculated as:

QPA~ w1�r1zw2�r2zw3�r3z . . . zwI�rIð Þ=

w1zw2zw3z . . . zwIð Þ

We identified feature Fi specific association ratios for 514,978

gene pairs (self-pairs removed), and computed QPA for 27,938

gene pairs with numerical values between 0.00177 and 1 (Table
S4). An example of calculating QPA for specific disease genes is

given under Text S1. In a related analysis, we studied associations

of genes and features after removing eleven features that describe

biochemical measurements of protein complexes (e.g. AKDH-

deficiency, RCC1-deficiency). Removing these features resulted in

9,298 gene-feature pairs. We identified high correlations for QPA

using the 9,298 versus all 9,407 gene-feature pairs, respectively

(Kendall Cor = 0.9899, Spearman Cor = 0.9981, and Pearson

Cor = 0.9978). While biochemical measurements support the

diagnosis of many mitochondrial diseases, these features may not

be essential for QPA predictions.

Correlation of QPA and gene functional interactions
We extracted 2,010 disease gene pairs (140 genes) from a recent

study that had integrated microarray co-expression, human and

orthologous protein-protein interactions, and Gene Ontology

(GO) similarities into Likelihood Ratios (LR) for gene functional

interactions [34]. LR ranged from 1.1 to 2,374,581 and we used a

linear transformation for LR to fall into a range between 0 and 1:

tLR~ log LRð Þ{min log LRð Þð Þð =

max log LRð Þ{min log LRð Þð Þðð

Overlapping all disease gene pairs with predictions for both LR

and QPA revealed 1,928 pairs (Table S4). Two-sided tests of

uniform distribution of LR and QPA for these pairs revealed non-

uniform distribution with p values of 2.2e-16 (significance level:

0.05). Rank correlation of LR and QPA for the 1,928 gene pairs

showed positive association with significant confidence: Kendall

(Cor = 0.077; p = 4.67e-7), Spearman (Cor = 0.115; p = 3.72e-7),

and Pearson (Cor = 0.145; p = 1.59e-10). Bivariate analysis and

Lowess plots further confirmed this finding (Figure S1). In

addition, we applied Euclidian distance and hierarchical average

linkage clustering (http://www.r-project.org) and identified six

gene clusters with higher to lower association of LR and QPA

(Figure S2 and Table S4).

Functional interactions of nuclear-encoded
mitochondrial genes

Out of the 174 DG, we identified functional interactions for 162

DG to 4,577 CG from a recent study [34]. As for the 162 DG, we

also recorded all genome-wide binary interactions for the 4,577 CG

with a total of 1,949,132 interactions. All gene interactions are non-

redundant and non-self-interacting. The interactions for the 4,577

CG included interactions to additional 5,358 genes that we labeled

CG interactors (CGin). We assigned the following four attributes to

the total 10,097 genes that included DG, CG and CGin (Table S6):

i. 1,283 disease genes identified through OMIM [26]; ii. 1,032

human orthologs to mouse essential genes [33]; iii. 977 human

orthologs to yeast essential genes [37]; and iv. 863 nuclear-encoded

mitochondrial genes through integrative analysis of two studies

[5,36]. We then computed for each DG (162) and CG (4,577) the

total number of interactions (i[all-genes]), as well as all interactions

to genes with the assigned attributes (i–iv). Table S5 lists all

genome-wide interactions for the 4,739 genes (col. C) and

interactions to genes with the four attributes (col. D–G).

Functional interactions of non-mitochondrial genes
The analysis of interactions of the non-mitochondrial CG (3551)

and DG (493) showed the following results: i. the total number of

interactions (i[all-genes]), which is recorded to all genes in the

human genome, was higher for CG than for DG (p = 3.67e-3); ii.

the relative number of DG interactions (i[disease-genes]/i[all-

genes]), which was recorded to all known human DG, was higher

for DG than for CG (p = 1.07e-21); and iii. the relative number of

interactions to human orthologs of mouse (i[mouse-essential]/i[all-

genes]) and yeast (i[yeast-essential]/i[all-genes]) essential genes

[33,37] was higher for the DG than the CG (mouse p = 3.77e-4;

yeast p = 7.62e-7).

Gene fraction analysis
We studied the number of interactions (degree) of genes in the

different gene groups and the probability distribution of these

interactions (degree distribution) over the whole network. For each

gene group, we computed the degree distributions P(k) as the

fraction of the number of genes that interact with k other genes,

where the sum of fractions of a specific gene group is 1. Similar to

the study by Goh et al. [33], we used log2k as the dependent

variable in Figure 3. We calculated P(k) for interactions of each

gene group to all human genes (3A), all human disease genes (3B)

and all mitochondrial genes (3C) using data in Table S5. We then

performed a fraction analysis by applying the linear regression

model to the degree distributions of each gene group and attribute

using the R statistical package (http://www.r-project.org) and

calculated the values for the regression line slopes, their p-values

and correlation coefficients (Table S7). We found that the

measured trends described by the linear regression model are

statistically significant for all gene groups with very small p-values

(,1028), which we obtained by testing the null hypothesis that the

slope is zero. The negative regression slopes identified for all gene

groups suggested a relatively higher portion of less-connected

genes and a lower tendency to form a hub structure. We then

ordered the gene groups using their slope values. The order was

based on the hypothesis that as larger the absolute value of the

negative regression slope, the higher the probability that lower-

connected genes outnumber the higher-connected genes. This

comparison showed that in the interactions to all genes (3A), DG

Mitochondrial Disease Phenotypes

PLoS Computational Biology | www.ploscompbiol.org 10 April 2009 | Volume 5 | Issue 4 | e1000374



mito showed relatively fewer interactions (20.00142) than CG

mito (20.00072), and in the interactions to all disease genes (3B),

DG mito showed relatively more interactions (20.00612) than CG

mito (20.00776). Similar relationships were found in the

comparison of the mitochondrial gene groups based on their

correlation coefficients (Table S7). We concluded from these

results that while mitochondrial disease genes displayed an overall

smaller connectivity, they showed a tendency to interact with each

other suggesting the formation of disease gene hubs in the

periphery of the mitochondrial gene networks.

Candidate genes for mitochondrial disorders
We applied the two supervised methods of discriminant analysis

[43] and Bayesian network analysis [44,45] to predict new

mitochondrial DG. From Table S5, we selected 695 mitochon-

drial genes and their attributes of functional interactions and

labeled the 162 DG as DG, the 495 CG as CG, and the 38 likely

mitochondrial DG as CG to serve as controls. The linear

discriminant covariance analysis was performed using the JMP

statistical software with predictions results listed in Table S8 (col.

D–I). For the Bayesian network analysis (col. K–P), we first

selected 100 typical DG out of the 162 DG, and 100 typical CG

out of the 495 CG (col. K). The 200 genes were imported as

training sets into a machine-learning algorithm and the Bayesian

network package of this program was used to train the model by

the method of cross validation [44]. We then imported the test set

of all 695 mitochondrial genes in order to predict mitochondrial

DG. The overlap of the two applied methods (col. Q) predicted

168 high-probability disease candidate genes out of the 495 non-

disease CG.

Author information
The accompanying mitochondrial phenome knowledgebase is

available at http://www.mitophenome.org
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