255 research outputs found

    The Genetics of Pubertal Growth and Timing

    Get PDF
    Puberty is a highly variable developmental stage marked by the development of secondary sex characteristics and the attainment of reproductive maturity. Variation during childhood developmental phases correlates with altered disease risk in adulthood; variation in pubertal growth and timing, in particular, correlates with adult risk for type 2 diabetes, obesity, adverse cardiovascular heath, and hormone-dependent cancers. While normal variation in age at menarche (AAM) has recently been investigated in large-scale genome-wide association (GWA) studies, the genetic regulation of male puberty remains less understood. Moreover, extreme variation in pubertal timing is a common cause for referral to pediatric specialists, while the underlying genetic factors are largely unknown. This work aimed to identify both common and rare genetic variants influencing pubertal growth and timing in both sexes. Utilizing Finnish population-based samples with frequent height measurements across puberty, we ran GWA of growth during late puberty and uncovered an association for variants near LIN28B, the most robust menarche-associated locus. Investigation of the longitudinal effects of two partly-correlated markers, one tagging a pubertal timing effect and one tagging an effect on adult stature, revealed distinct sex-specific association patterns with height growth from birth until adulthood. Thus, the LIN28B locus tags an important developmental regulator of both growth and maturational development. We then expanded to include European-wide samples within the Early Growth Genetics (EGG) Consortium. Genetic mapping of three pubertal growth traits revealed 9 novel pubertal growth variants in addition to LIN28B, 5 of which also associated with pubertal timing, and one which associated with childhood and adult body mass index (BMI). Longitudinal investigation of these variants showed diverse patterns of association with height growth, some of which contradicted epidemiological correlations between rapid prepubertal growth, advanced puberty, and reduced final adult stature. Given the complex relationships between these traits, tracking individual unique effects across multiple periods of growth may help uncover the pathways linking childhood development with adult health outcomes. Also within the EGG Consortium, GWA meta-analysis of Tanner genital and breast staging data uncovered the first robust male puberty locus on chromosome 16 near MKL2, a locus which also associates with advanced menarche, decreased pubertal growth, and shorter adult stature. Furthermore, part of the genetic architecture underlying the onset of puberty is shared between males and females, evidenced by the high correlation between menarche-advancing alleles and earlier male genital development. However, while BMI-increasing alleles strongly correlate with advanced breast development in girls, our data shows that these variants play a more complex role in male puberty. Finally, we performed targeted sequencing of the pericentromeric region of chromosome 2 previously robustly linked with constitutional delay of growth and puberty (CDGP), an extreme delay in normal pubertal timing, in multiply affected Finnish families. Analysis of shared low-frequency variation in genes and regulatory regions of the best functional candidate genes revealed 6 protein-altering variants in a single gene, DNAH6, in 10 of the families. However, follow-up sequencing in an additional 135 Finnish CDGP cases failed to provide evidence for enrichment of DNAH6 mutations compared to a large, unique set of SISu Finnish population controls. DNAH6 is potentially an appropriate candidate gene that may be involved in the regulation of steroid hormone biosynthesis by the cytoskeleton. This study highlights the difficulties of detecting susceptibility variants under a linkage signal for complex traits. Taken together, these results advance our understanding of the genetics of pubertal timing and development in both sexes. However, more work is needed to understand how each genetic locus functions in the biology of puberty and childhood growth, and further study of the genetic loci highlighted in this work may help pinpoint the mechanisms that link the timing of this important developmental stage with adult health and risk for common diseases. Keywords: puberty, development, growth, genome-wide association studies (GWAS), targeted sequencing, constitutional delay of growth and puberty (CDGP)non

    Genetics of early growth traits

    Get PDF
    This is the author accepted manuscript. the final version is available from Oxford University Press via the DOI in this recordIn recent years, genome-wide association studies have shed light on the genetics of early growth and its links with later-life health outcomes. Large-scale datasets and meta-analyses, combined with recently developed analytical methods, have enabled dissection of the maternal and fetal genetic contributions to variation in birth weight. Additionally, longitudinal approaches have shown differences between the genetic contributions to infant, childhood and adult adiposity. In contrast, studies of adult height loci have shown strong associations with early body length and childhood height. Early growth-associated loci provide useful tools for causal analyses: Mendelian randomization (MR) studies have provided evidence that early BMI and height are causally related to a number of adult health outcomes. We advise caution in the design and interpretation of MR studies of birth weight investigating effects of fetal growth on later-life cardiometabolic disease because birth weight is only a crude indicator of fetal growth, and the choice of genetic instrument (maternal or fetal) will greatly influence the interpretation of the results. Most genetic studies of early growth have to date centered on European-ancestry participants and outcomes measured at a single time-point, so key priorities for future studies of early growth genetics are aggregation of large samples of diverse ancestries and longitudinal studies of growth trajectories.Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of HealthWellcome TrustRoyal Societ

    New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk

    Get PDF
    To increase our understanding of the genetic basis of adiposity and its links to cardiometabolic disease risk, we conducted a genome-wide association meta-analysis of body fat percentage (BF%) in up to 100,716 individuals. Twelve loci reached genome-wide significance (P\u3c5 × 10−8), of which eight were previously associated with increased overall adiposity (BMI, BF%) and four (in or near COBLL1/GRB14, IGF2BP1, PLA2G6, CRTC1) were novel associations with BF%. Seven loci showed a larger effect on BF% than on BMI, suggestive of a primary association with adiposity, while five loci showed larger effects on BMI than on BF%, suggesting association with both fat and lean mass. In particular, the loci more strongly associated with BF% showed distinct cross-phenotype association signatures with a range of cardiometabolic traits revealing new insights in the link between adiposity and disease risk

    Using linear and natural cubic splines, SITAR, and latent trajectory models to characterise nonlinear longitudinal growth trajectories in cohort studies

    Get PDF
    BACKGROUND: Longitudinal data analysis can improve our understanding of the influences on health trajectories across the life-course. There are a variety of statistical models which can be used, and their fitting and interpretation can be complex, particularly where there is a nonlinear trajectory. Our aim was to provide an accessible guide along with applied examples to using four sophisticated modelling procedures for describing nonlinear growth trajectories. METHODS: This expository paper provides an illustrative guide to summarising nonlinear growth trajectories for repeatedly measured continuous outcomes using (i) linear spline and (ii) natural cubic spline linear mixed-effects (LME) models, (iii) Super Imposition by Translation and Rotation (SITAR) nonlinear mixed effects models, and (iv) latent trajectory models. The underlying model for each approach, their similarities and differences, and their advantages and disadvantages are described. Their application and correct interpretation of their results is illustrated by analysing repeated bone mass measures to characterise bone growth patterns and their sex differences in three cohort studies from the UK, USA, and Canada comprising 8500 individuals and 37,000 measurements from ages 5–40 years. Recommendations for choosing a modelling approach are provided along with a discussion and signposting on further modelling extensions for analysing trajectory exposures and outcomes, and multiple cohorts. RESULTS: Linear and natural cubic spline LME models and SITAR provided similar summary of the mean bone growth trajectory and growth velocity, and the sex differences in growth patterns. Growth velocity (in grams/year) peaked during adolescence, and peaked earlier in females than males e.g., mean age at peak bone mineral content accrual from multicohort SITAR models was 12.2 years in females and 13.9 years in males. Latent trajectory models (with trajectory shapes estimated using a natural cubic spline) identified up to four subgroups of individuals with distinct trajectories throughout adolescence. CONCLUSIONS: LME models with linear and natural cubic splines, SITAR, and latent trajectory models are useful for describing nonlinear growth trajectories, and these methods can be adapted for other complex traits. Choice of method depends on the research aims, complexity of the trajectory, and available data. Scripts and synthetic datasets are provided for readers to replicate trajectory modelling and visualisation using the R statistical computing software. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12874-022-01542-8

    Using linear and natural cubic splines, SITAR, and latent trajectory models to characterise nonlinear longitudinal growth trajectories in cohort studies

    Get PDF
    BACKGROUND: Longitudinal data analysis can improve our understanding of the influences on health trajectories across the life-course. There are a variety of statistical models which can be used, and their fitting and interpretation can be complex, particularly where there is a nonlinear trajectory. Our aim was to provide an accessible guide along with applied examples to using four sophisticated modelling procedures for describing nonlinear growth trajectories. METHODS: This expository paper provides an illustrative guide to summarising nonlinear growth trajectories for repeatedly measured continuous outcomes using (i) linear spline and (ii) natural cubic spline linear mixed-effects (LME) models, (iii) Super Imposition by Translation and Rotation (SITAR) nonlinear mixed effects models, and (iv) latent trajectory models. The underlying model for each approach, their similarities and differences, and their advantages and disadvantages are described. Their application and correct interpretation of their results is illustrated by analysing repeated bone mass measures to characterise bone growth patterns and their sex differences in three cohort studies from the UK, USA, and Canada comprising 8500 individuals and 37,000 measurements from ages 5-40 years. Recommendations for choosing a modelling approach are provided along with a discussion and signposting on further modelling extensions for analysing trajectory exposures and outcomes, and multiple cohorts. RESULTS: Linear and natural cubic spline LME models and SITAR provided similar summary of the mean bone growth trajectory and growth velocity, and the sex differences in growth patterns. Growth velocity (in grams/year) peaked during adolescence, and peaked earlier in females than males e.g., mean age at peak bone mineral content accrual from multicohort SITAR models was 12.2 years in females and 13.9 years in males. Latent trajectory models (with trajectory shapes estimated using a natural cubic spline) identified up to four subgroups of individuals with distinct trajectories throughout adolescence. CONCLUSIONS: LME models with linear and natural cubic splines, SITAR, and latent trajectory models are useful for describing nonlinear growth trajectories, and these methods can be adapted for other complex traits. Choice of method depends on the research aims, complexity of the trajectory, and available data. Scripts and synthetic datasets are provided for readers to replicate trajectory modelling and visualisation using the R statistical computing software

    Targeted Resequencing of the Pericentromere of Chromosome 2 Linked to Constitutional Delay of Growth and Puberty

    Get PDF
    Constitutional delay of growth and puberty (CDGP) is the most common cause of pubertal delay. CDGP is defined as the proportion of the normal population who experience pubertal onset at least 2 SD later than the population mean, representing 2.3% of all adolescents. While adolescents with CDGP spontaneously enter puberty, they are at risk for short stature, decreased bone mineral density, and psychosocial problems. Genetic factors contribute heavily to the timing of puberty, but the vast majority of CDGP cases remain biologically unexplained, and there is no definitive test to distinguish CDGP from pathological absence of puberty during adolescence. Recently, we published a study identifying significant linkage between a locus at the pericentromeric region of chromosome 2 (chr 2) and CDGP in Finnish families. To investigate this region for causal variation, we sequenced chr 2 between the genomic coordinates of 79-124 Mb (genome build GRCh37) in the proband and affected parent of the 13 families contributing most to this linkage signal. One gene, DNAH6, harbored 6 protein-altering low-frequency variants (<6% in the Finnish population) in 10 of the CDGP probands. We sequenced an additional 135 unrelated Finnish CDGP subjects and utilized the unique Sequencing Initiative Suomi (SISu) population reference exome set to show that while 5 of these variants were present in the CDGP set, they were also present in the Finnish population at similar frequencies. Additional variants in the targeted region could not be prioritized for follow-up, possibly due to gaps in sequencing coverage or lack of functional knowledge of non-genic genomic regions. Thus, despite having a well-characterized sample collection from a genetically homogeneous population with a large population-based reference sequence dataset, we were unable to pinpoint variation in the linked region predisposing delayed puberty. This study highlights the difficulties of detecting genetic variants under linkage regions for complex traits and suggests that advancements in annotation of gene function and regulatory regions of the genome will be critical for solving the genetic background of complex phenotypes like CDGP.Peer reviewe

    Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.

    Get PDF
    Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
    corecore