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Abstract 

Background: Longitudinal data analysis can improve our understanding of the influences on health trajectories 
across the life‑course. There are a variety of statistical models which can be used, and their fitting and interpretation 
can be complex, particularly where there is a nonlinear trajectory. Our aim was to provide an accessible guide along 
with applied examples to using four sophisticated modelling procedures for describing nonlinear growth trajectories.

Methods: This expository paper provides an illustrative guide to summarising nonlinear growth trajectories for 
repeatedly measured continuous outcomes using (i) linear spline and (ii) natural cubic spline linear mixed‑effects 
(LME) models, (iii) Super Imposition by Translation and Rotation (SITAR) nonlinear mixed effects models, and (iv) latent 
trajectory models. The underlying model for each approach, their similarities and differences, and their advantages 
and disadvantages are described. Their application and correct interpretation of their results is illustrated by analysing 
repeated bone mass measures to characterise bone growth patterns and their sex differences in three cohort studies 
from the UK, USA, and Canada comprising 8500 individuals and 37,000 measurements from ages 5–40 years. Recom‑
mendations for choosing a modelling approach are provided along with a discussion and signposting on further 
modelling extensions for analysing trajectory exposures and outcomes, and multiple cohorts.

Results: Linear and natural cubic spline LME models and SITAR provided similar summary of the mean bone growth 
trajectory and growth velocity, and the sex differences in growth patterns. Growth velocity (in grams/year) peaked 
during adolescence, and peaked earlier in females than males e.g., mean age at peak bone mineral content accrual 
from multicohort SITAR models was 12.2 years in females and 13.9 years in males. Latent trajectory models (with 
trajectory shapes estimated using a natural cubic spline) identified up to four subgroups of individuals with distinct 
trajectories throughout adolescence.

Conclusions: LME models with linear and natural cubic splines, SITAR, and latent trajectory models are useful for 
describing nonlinear growth trajectories, and these methods can be adapted for other complex traits. Choice of 
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Background
Appropriate modelling of repeated measures in cohort 
studies can improve our understanding of: (i) patterns of 
change across the life-course (e.g., developmental trajec-
tories to peak function and age-related decline); (ii) influ-
ences on these patterns of change; and (iii) influence of 
variation in patterns of change on later health and well-
being [1]. Many developmental processes display non-
linear patterns of change with age, especially during the 
growing years, which makes it important but challenging 
to accurately model their trajectories [2]. Also requir-
ing attention is the choice of method to appropriately 
address the research question, e.g., whether to use meth-
ods that model an average trajectory in the whole sample 
[3–5] or clustering based approaches to identify groups 
of individuals with similar trajectories [6]. Moreover, 
there is a lack of accessible and practical guidance which 
can discourage novice researchers from using more com-
plex methods [7]. Thus, an overview of sophisticated 
modelling procedures along with open-source software 
applications and application in multiple different cohorts 
can help address these challenges.

This paper provides a guide to describing nonlin-
ear longitudinal growth trajectories for a single repeat-
edly-measured continuous outcome using linear and 
natural cubic regression splines [3, 4], SITAR (Super Impo-
sition by Translation and Rotation) models [5], and (spline-
based) latent trajectory models [6] – all common methods 
for examining growth. The next section of the paper gives 
an overview of modelling nonlinear growth and the various 
models considered. The four approaches (and the appro-
priate interpretation of their results) are then illustrated by 
modelling bone mass trajectories across three cohort stud-
ies to characterise patterns of change and their sex differ-
ences. The final section provides recommendations about 
when different modelling methods might be useful and 
discusses approaches and challenges in analysing exposures 
and outcomes of patterns of change, and in making cross-
cohort comparisons.

Methods
Modelling nonlinear growth
A variety of statistical methods are available for han-
dling repeated (correlated) observations from the same 
individuals and analysing trajectories [8]. Most methods 
involve fitting growth models within either a structural 

equation modelling framework (e.g., latent growth curve 
analysis where change is analysed as a latent process [9]) 
or a multilevel modelling framework, with both giving 
similar results under certain conditions [10]. One type 
of repeated measures model that is useful when the pri-
mary interest is estimating a population-average trajec-
tory is generalised estimating equations (GEE) [11, 12]. 
This uses a working covariance matrix to correct for the 
dependence among repeated observations but is usu-
ally not suited for examining variation within/between 
individuals. Another repeated measures model that can 
estimate both population-average and individual-specific 
trajectories (and is more robust to missing outcome data 
than GEE) is the mixed-effects model [13].

Mixed‑effects models
Mixed-effects models (random-effects, multilevel, or 
hierarchical models) estimate a population-average tra-
jectory as ‘fixed effects’ and variation of individual trajec-
tories around this average as ‘random effects’ [12–14]. A 
common form is the linear mixed-effects (LME) model 
where the repeated outcome is modelled by a linear com-
bination of the fixed and random effects. An LME model 
for a single continuous outcome (e.g., weight), as a linear 
function of time, which includes random intercepts and 
random slopes can be written as follows:

where, yij denotes a single outcome y measured in indi-
vidual i  (i = 1, 2, …, N) at time tij  (j = 1, 2, …, Ji), with 
responses (y1…yN) assumed to be independent between 
individuals. βoi and β1i are individual-specific intercept 
and slope terms (respectively) that have fixed effects 
(βo, β1) and random effects (uoi, u1i). The random effects 
ui are assumed to be independently normally distrib-
uted with mean zero and covariance matrix Ωu. Residual 
errors εij are assumed to be independently identically 
normally distributed with variance σ 2

ε  and reflect the 
difference between observed and predicted values for 

(1)yij = βoi + β1itij + εij , εij ∼ N
(

0, σ 2
ε

)

, i.i.d.

(1.1)β0i = β0 + u0i,u0i ∼ N
(

0, σ 2
0

)

, i.i.d.

(1.2)β1i = β1 + u1i,u1i ∼ N
(

0, σ 2
1

)

, i.i.d.

method depends on the research aims, complexity of the trajectory, and available data. Scripts and synthetic datasets 
are provided for readers to replicate trajectory modelling and visualisation using the R statistical computing software.

Keywords: ALSPAC, Bone mineral content, BMDCS, Growth models, Life‑course, Mixed‑effects, PBMAS, Tutorial
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individual i at occasion j. The random effects ui and 
residuals εij are assumed to be mutually independent.

Moving beyond a linear trajectory
The LME model in Eq. (1) assumes linear change in the 
outcome with increasing time (e.g., age). Nonlinear 
change, which is common (particularly when modelling 
change over a large age range and/or during periods of 
rapid complex growth) can be incorporated into LME 
models by including linear combinations of nonlinear 
terms for age in the model – i.e., keeping the linear link 
function. Historically, the standard approach has been to 
make use of polynomial functions to approximate nonlin-
ear curves. However, as illustrated in Fig. 1, polynomials 
have limitations, e.g., simpler polynomials give few curve 
shapes and more complex polynomials tend to fit badly 
at extremes and produce artefactual turns in the curve. 
A more flexible alternative to analysing complex patterns 
of change (e.g., with several peaks/troughs, as with body 
mass index (BMI) over infancy, childhood, and adoles-
cence) is using a set of connected polynomials covering 
different segments of the time/age distribution known as 
spline functions.

Spline functions
A spline function is a set of piecewise polynomials that 
are joined together at break/turning points called knots 
(see [16] for an introductory review). Splines are formed 
using spline basis functions (the dimensional space 

containing each element from a set of local polynomi-
als) and can be fitted by various methods including lin-
ear and nonlinear models. The polynomial degree and 
method of knot placement is generally what distinguishes 
between different spline functions. There are three main 
ways of estimating spline functions: as regression splines, 
penalised regression splines, and smoothing splines [12, 
16–19]. Regression splines use fewer knots than observa-
tions – here both the number and location of knots must 
be specified by the user. Penalised regression splines are 
regression splines that include an added penalty on the 
parameters – here, the user does not need to specify 
the knots, instead, a (maximum) spline basis complex-
ity (flexibility) is specified, and the spline coefficients are 
then penalised by a tuning parameter to avoid overfit-
ting. Smoothing splines use a knot at every unique obser-
vation with penalisation of the estimated curve – these 
preceded penalised regression splines and are now less 
widely used.

In this paper, we consider two commonly used types 
of regression splines: linear splines and natural cubic 
splines. These can be parameterised by a linear combi-
nation of the transformed covariate (e.g., age) and thus 
they can be fitted within an LME framework to model 
a repeated outcome as a nonlinear function of time. Fit-
ting penalised regression spline models is covered briefly 
in the Discussion section. The next three sections give 
an overview to using linear and natural cubic splines in 
LME models and approaches to choosing the number 
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Fig. 1 Example illustrating the limitations of using polynomial functions to approximate a nonlinear growth trajectory. Coloured lines represent 
predicted trajectories from LME models with age as (a) linear term and as (b) quadratic polynomial and (c) cubic polynomial. Points display weight 
measurements taken from 70 females in the Berkeley Child Guidance Study. Dataset was originally provided as an appendix to the book by 
Tuddenham and Snyder (1954). The data for this example were taken from the freely accessible ‘Berkeley’ dataset provided with the ‘sitar’ package 
[15]
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and position of knots. SITAR, which utilises a natural 
cubic spline within a nonlinear mixed effects framework, 
is then covered. These three mixed-effects modelling 
approaches all estimate population-average trajectories 
(and individual variation from these) and so can be used 
when it is hypothesised that the study population shares a 
common mean trajectory. Extensions to latent trajectory 
models (with trajectory shapes  estimated using natural 
cubic splines) for situations where the aim/hypothesis is 
to identify suspected latent heterogenous trajectories in 
subpopulations as opposed to one mean trajectory for 
the whole population are covered in the subsequent sec-
tion. All four modelling approaches are summarised in 
Table 1.

Linear spline LME models
The simplest spline function is the linear spline which can 
be used to describe growth by a series of connected lines 
joined at knots, where the slope can change after each 
knot [3]. For example, a linear spline for age (measured 
from 5 to 40 years) with 2 knots at ages 10 and 15 years 
produces three different linear slopes of the repeated out-
come measure (e.g., weight): 5 to ≤10, 10 to ≤15, and 15 
to ≤40 years. The LME model in Eq. (1) can be rewrit-
ten to include a linear spline function for age b(t) with K 
knots ξ1 < ξ2 < …ξK as:

The model in Eq. (2) includes a linear spline in both the 
fixed and random effects (with bki having fixed effect bk 
and random effect vki) which allows for nonlinear mean 
and individual trajectories, respectively. The fixed and 
random splines are assumed to have the same knots in 
Eq. (2) however, it is possible to allow fewer knots in the 
random spline. If the aim was solely to model a nonlinear 
mean trajectory, then Eq. (2) can be simplified by replac-
ing the random spline with a random line – here, βoi and 
β1i have similar interpretation as in Eq. (1), with random 
effect vki omitted (i.e., bki = bk). The rate of change of a lin-
ear spline (1st derivative) is not continuous at the knots. 
An alternative function that has continuous  1st and  2nd 
derivatives is the natural cubic spline.

Natural cubic spline LME models
A natural cubic spline (also known as restricted cubic 
spline) is a set of cubic polynomials with continuity and 
slope constraints at each knot, and additional constraint 
of linearity at the extremes of the curve, typically before 

(2)yij = β0i + β1itij +
∑K

k=1
bki

(

tij − ξk
)

+
+ εij

(2.1)
(

tij − 𝜉k

)

+
=

{

0 tij < 𝜉k
(

tij − 𝜉k

)

tij ≥ 𝜉k

the first and after the last knot [12, 16, 20, 21]. This extra 
linearity constraint makes the trajectory less erratic at the 
ends of the age distribution and so more reliable than lin-
ear splines (and unrestricted cubic splines). The inclusion 
of cubic terms with continuity constraints means natu-
ral cubic spline models can be more parsimonious for 
complex shapes than a linear spline with many knots. An 
LME model that includes a natural cubic spline function 
b(t) with K knots ξ1 < ξ2 < …ξK (and a linearity constraint 
for values t < ξ1 and t > ξK) can be written as:

In words, a natural cubic spline for age (measured 
from 5 to 40 years) with 2 knots at 10 and 15 years (and 
with first and last knots at 5 and 40 years, respectively), 
invokes 3 cubic polynomials: between 5 to ≤10, 10 to 
≤15, and 15 to ≤40 years, and has its curvature equal to 
0 at ages 5 and 40 years. If the first and last knots were 
placed at older and younger ages respectively, then the 
curve would be linear from the first and last knot to the 
youngest and oldest ages, respectively. Note, we have 
defined the natural cubic spline using truncated power 
basis (like how the linear spline was defined). The analy-
sis software creates this function using a B-spline basis 
which is mathematically challenging to represent but 
numerically more stable. Whatever basis is used, if the 
polynomial degree and knots are identical, then the 
spline will always be the same.

Choosing number and location of knots
The flexibility of regression splines is determined by the 
number/position of the knot points. For a natural cubic 
spline, the number of knots (rather than their position) is 
more important [20]. A small number of knots (between 
3 and 5 knots) provides a good fit to some patterns [20] 
though, with many repeats (e.g., data spanning many 
decades) more knots may be required. Approaches to 
selecting the number/position of knots include (i) placing 
knots at quantiles of the age distribution (ii) using equally 
spaced knots, (iii) inspecting smoothing curves and using 
these to select knots, (iv) starting with many knots and 
reducing their number, and (v) placing knots at the mean 
age of data collection [3].

Model selection can be done informally (i.e., by 
inspecting plots of fitted values/residuals from competing 
models with different knots). Valid comparison between 
models with different knots (i.e., models with non-nested 

(3)yij = β0i + β1itij +
∑K−2

k=1
bki

(

tij − ξk
)3

∗
+ εij

(3.1)

(

tij − �k

)3

∗
=

(

tij − �k

)3

+
−

(

tij − �K−1

)3

+

�K − �k

�K − �K−1

+

(

tij − �K

)3

+

�K−1 − �k

�K − �K−1

, k = 1, 2,… ,K − 2
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mean structures) can be done using likelihood-based 
information criteria (e.g., Bayesian Information Criterion 
value (BIC)) provided maximum likelihood (ML) estima-
tion is used [22]. Note however, ML-based variance esti-
mates are biased downwards [12] and so one approach is 
to compare models fitted by ML and by restricted maxi-
mum likelihood (REML). Cross-validation is also useful 
for model selection [23]. If knot position was a primary 
interest (e.g., testing sensitive periods), then topic knowl-
edge can inform placement of knots [24].

SITAR models
SITAR is a shape invariant nonlinear mixed-effects model 
[5, 25]. Whereas LME spline models are linear models 
that allow terms to describe a non-linear trajectory with 
age, nonlinear mixed-effects models are fundamentally 
nonlinear in the coefficients [12]. SITAR assumes that a 
study population has a common characteristic curve (fit-
ted as fixed effects), which through shifting and scaling 
(by a set of 3 random effects) can be transformed into any 
individual curve. Following the notation in Cole et al [5, 
26], a SITAR model for outcome y can be written as:

where yij is the outcome measurement for individual i 
at age j; α0, β0, γ0 are fixed effects; αi, βi, and γi are ran-
dom effects for the i th individual; h(t) is a natural cubic 
spline curve; and εij are independent normally distributed 
errors. The 3 random effects describe the size (αi), timing 
(βi), and intensity (γi) of individual growth relative to the 
mean growth curve. αi adjusts for the differences in y and 
geometrically reflects individual shifts up or down (trans-
lation) in the mean curve; βi adjusts for differences in 
the timing of peak growth in y and geometrically reflects 
left to right shifts (translation) in the mean curve; and γi 
adjusts for the duration of the growth spurt and geomet-
rically corresponds to shrinking or stretching of the age 
scale and rotating the curve.

Note, a key difference from other mixed effects models, 
with or without a natural cubic spline mean curve, is that 
SITAR models growth on both the x- and y-axes – this 
allows differences in developmental age to be modelled. 
Common practice in selecting the best fitting SITAR 
models is to compare models with varying number of 
knots placed at quantiles of the age distribution for the 
spline curve [5]. The internal SITAR model structure is 
also customisable [15].

Latent trajectory models
The spline and SITAR models described above assume 
that the population is homogenous and described at the 

(4)yij = α0 + αi + h

(

t − β0 − βi

exp (−γ0 − γi)

)

+ εij

population level by a mean trajectory, with variability 
of individuals about this mean. As an alternative, latent 
trajectory models assume that there is a heterogenous 
population composed of unknown subgroups (latent 
classes) of individuals, each characterised by a unique 
mean trajectory profile [6, 27, 28]. Therefore, latent 
trajectory modelling addresses a different research 
hypothesis where heterogeneity in the population-aver-
age (mean) trajectory is of key interest. Latent trajec-
tory models aim to minimise within group variance and 
maximise between group differences so that individuals 
are more similar within groups than between groups. 
Each individual has a probability of belonging to each 
latent class and is assigned to the class with the highest 
probability. Class membership is defined using a latent 
discrete random variable, with membership probability 
described by a multinomial logistic model.

Several latent trajectory modelling approaches are 
possible (see [6] for a recent overview). These include 
models that ignore the longitudinal structure (known 
as longitudinal latent class analysis) and models assum-
ing no variability between individuals within subgroups 
(known as latent class growth analysis or group-based 
trajectory models). Another approach that is a direct 
extension of standard mixed-effects models is a growth 
mixture model, which involves fitting multiple growth 
curves to subgroups of individuals that share a com-
mon trajectory. Following the notation in [6], the LME 
model in Eq. (1) can be rewritten as a growth mixture 
model as:

where C indicates number of latent classes, with proba-
bilities pc, c = 1, …, C, with 0 ≤ pc ≤ 1 and 

∑C
c=1pc = 1 . All 

other terms are defined as before but specifically for each 
class c. Growth can be parameterised as nonlinear, e.g., 
using a natural cubic spline curve in each class (assuming 
same number/position of knots). Class-specific covari-
ances for individual-level error terms can be included, 
and both fixed and random effects can be class specific.

Model estimation is conditional on a pre-specified 
number of classes, with the optimal number of classes 
identified through a combination of approaches. These 
include assessing interpretability and plausibility of 
classes e.g., inspecting if trajectories show biologically 
plausible patterns and examining characteristics (e.g., 
socioeconomic position) of the classes [29], informa-
tion criteria, entropy (statistic for class separation), and 
numerically meaningful sub-groups (e.g., ≥5% class 
size). Models with > 1 class are prone to local maxima 
solutions (i.e.,  convergence to the  best solution in a 
neighbourhood of the parameter space, rather than the 

(5)yij|c = βc
0i + βc

1itij + εcij for c = 1, . . . ,C ,
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global maximum (largest loglikelihood)). This can be 
avoided by using different starting values [30].

Illustrative example
Next, using data from three cohort studies, we demon-
strate the application of the four modelling approaches 
described above to characterise bone mineral content 
(BMC) growth trajectories and their sex differences, 
including in population subgroups with potentially dis-
tinct trajectories.

Bone mass through the life course
Bone mass in early life is thought to be an important 
determinant of fracture and osteoporosis risk in later life 
[31] however, few studies have described its developmen-
tal trajectory. Furthermore, sex differences in osteoporo-
tic fracture are assumed to be due to menopause but may 
also reflect early sexual dimorphism in bone develop-
ment. This is a timely exploration, given the availability of 
studies with repeated measurements of BMC (a marker 
of bone strength).

Studies and measurements
Three studies with repeated BMC measurements from 
childhood to adulthood were included (Table  2, Addi-
tional  file  1): the Avon Longitudinal Study of Parents 
and Children (ALSPAC) [32, 33], Bone Mineral Den-
sity in Childhood Study (BMDCS) [34], and Pediatric 
Bone Mineral Accrual Study (PBMAS) [35]. Total-body 
(excluding-head) BMC was measured in grams using 
whole-body Dual-Energy X-ray Absorptiometry (DXA) 

scans. Of note, the studies used DXA devices from dif-
ferent manufacturers (Lunar vs. Hologic) which scale 
differently and are not interchangeable but repeat scans 
within studies were acquired on the same device. Individ-
uals from each study were included if they had ≥1 meas-
ure of BMC and no missing data on age at DXA scan (in 
years) or sex. Analyses were restricted to white ethnic-
ity because 2 cohorts were ethnically homogeneous [33, 
35]. The final analysis samples comprised 3888 males and 
4007 females in ALSPAC, 465 males and 488 females in 
BMDCS, and 112 males and 127 females in PBMAS. All 
studies had ethics approval and obtained parental or par-
ticipant informed consent.

Statistical analysis
Analyses were performed in R version 4.0.2 (R Project for 
Statistical Computing) and RStudio version 1.3.1 (RStu-
dio Team). R code is available at https:// github. com/ ael-
hak/ nltmr/. Synthetic versions of the PBMAS cohorts 
were simulated [36] and can be found in the same 
repository.

Prior to trajectory modelling, scatterplots of BMC 
against age, and line plots of the individual BMC tra-
jectories were used to inspect the form of the trajectory 
and identify clearly outlying observations. The data-
sets used for trajectory modelling (Fig.  2) showed as 
expected nonlinear change in BMC with age, and higher 
BMC in ALSPAC due to Lunar device. The numbers 
of individuals at each visit were described and age and 
BMC were summarised with means and standard devia-
tions (Additional file  1). Models were fitted separately 

Table 2 Characteristics of the three cohort studies included in the trajectory modelling

a Trajectory modelling was restricted to white ethnicity individuals

Study name Avon Longitudinal Study of 
Parents and Children (ALSPAC)

Bone Mineral Density in 
Childhood Study (BMDCS)

Pediatric Bone Mineral Accrual 
Study (PBMAS)

Design birth cohort study (started in 
1990–1992)

child cohort study (started in 
2002–2003)

child cohort study (started in 1991)

Region and country catchment area of 3 health authori‑
ties in Southwest England, UK

5 USA clinic centres: Los Angeles, 
New York, Cincinnati, Omaha, 
Philadelphia

2 elementary schools, Saskatoon, 
Saskatchewan, Canada

Birth years 1990–1992 1985–1997 1983–1976

Ethnicity 98% white ethnicity ethnically diverse 95% white ethnicity

DXA device used to measure BMC Lunar Prodigy Hologic QDR‑4500A Hologic QDR‑2000

Mean age at the baseline/youngest 
DXA scan (range)

9.9 years (8.8–11.7 years) 10.8 years (6.0–17.0 years) 11.8 years (8.0–15.1 years)

Mean age at last/oldest DXA scan 
(range)

24.6 years (22.4–26.5 years) 16.1 years (6.9–23.3 years) 37.3 years (34.3–40.2 years)

Frequency and the maximum num‑
ber of repeated DXA scans

up to 6 repeated scans at mean 
ages 9.9, 11.7, 13.8, 15.4, 17.8, and 
24.6 years

up to 7 yearly repeated scans Up to 16 repeated scans (1991–
1998, 2003–2005, 2007–2011 and 
2016–2017)

Individuals included in the  analysisa 4007 females
3888 males

488 females
465 males

127 females
112 males

https://github.com/aelhak/nltmr/
https://github.com/aelhak/nltmr/
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by sex due to expected difference in bone mineral con-
tent accrual, and our aim was to explore this in the illus-
trative example.

Linear and natural cubic spline LME models were fit-
ted using the ‘lme4’ package [37]. Models with 2 to 6 
knots (placed at quantiles of the age distribution) in the 
fixed effects curve were compared. Nonlinear individual 
trajectories were allowed by including a random effects 
spline with 1 knot at the median. SITAR models with 
2 to 6 knots (at quantiles of the age distribution) in the 
spline curve (and three random-effects) were fitted using 
the ‘sitar’ package [15]. LME and SITAR models were 
fitted by ML and best fitting models (optimum number 

of knots) were determined by the smallest BIC (Addi-
tional  file  2). Goodness of fit for the selected models 
was assessed by examining residuals (conditional on the 
random effects) from LME models and variance in BMC 
explained by SITAR models. The selected models were 
used to describe BMC growth trajectory and growth 
velocity. Slopes of the fixed effects spline segments from 
the linear spline models were used to summarise mean 
BMC velocity during different age windows and identify 
windows for peak growth. Mean peak BMC velocity and 
age at peak BMC velocity were obtained from the natural 
cubic spline LME and SITAR models by differentiating 
the mean spline curves.
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Fig. 2 Plots of the cohort datasets used in the trajectory modelling showing (a) bone mineral content (BMC) values at each age, and (b) BMC 
individual trajectories. Figure shows the observed BMC values by cohort and sex (a), and the observed BMC individual trajectories by cohort and sex 
(b)
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Growth mixture models were fitted using the ‘lcmm’ 
package [30]. The forms of the best fitting mean natural 
cubic spline curves were used to model the fixed effects 
age curve. Models included random intercepts and ran-
dom linear age slopes. Models with different numbers of 
latent classes were compared: from a 1-class model (i.e., 
a standard natural cubic spline LME model where all 
individuals follow a single mean trajectory) up to models 
with 5 classes. Models with > 1 class included class-spe-
cific random effects covariance matrices. An automatic 
search procedure was used to estimate each 2–5 class 
model for 100 iterations using random initial values from 
the distribution of the 1-class model. Optimal number 
of classes was chosen by inspecting predicted trajectory 
sub-groups from each model for biological plausibility, 
in addition to the smallest BIC and biggest entropy, and 
by excluding small class size (≥5%). Goodness of fit and 
discrimination capacity of the selected models (i.e. with 
optimal number of classes) was assessed by calculating 
posterior class membership probabilities [30].

Results
The mean predicted BMC trajectories in each cohort 
from the linear spline LME (Fig.  3), natural cubic 
spline LME (Fig. 4), and SITAR models (Fig. 5) showed 
that BMC increased with age up to a plateau in young 
adulthood, and thereafter remained stable to age 40 
(in  PBMAS). All models showed evidence of steeper 
growth trajectories through adolescence coinciding with 
emerging sex differences, with males subsequently hav-
ing higher BMC than females, and plateauing later than 
females. BMC trajectories from all models were broadly 
similar (Fig.  6). Both linear and natural cubic  spline 
LME models and SITAR provided a good fit to the data 
(Online  Resource 2). The mean BMC growth velocity 

in different age windows (from linear spline LME mod-
els) peaked during adolescence, and the peak was lower 
and occurred earlier in females than males (Table  3). 
Mean BMC growth velocity curves from natural cubic 
spline LME and SITAR models were similar (Figs.  4-
5): for all cohorts, the mean ages at peak BMC veloc-
ity from both models were within the age windows for 
peak growth identified by the linear spline LME models 
(Table 4).

The selected growth mixture models identified 3 
subgroups in females and 2 subgroups in males from 
ALSPAC and BMDCS, and 4 in females and 3 in males 
from PBMAS (Fig. 7). Overall, differences in mean BMC 
between subgroups were larger during adolescence 
than in childhood and adulthood. One group with 15% 
of PBMAS females had higher mean BMC up to age 40 
than the remaining three groups. A group comprising 
27% of PBMAS males reached a lower peak and showed 
signs of bone loss by age 40, compared to the other two 
groups. The 2 trajectory groups in ALSPAC males dis-
played a biologically implausible lack of plateau by early 
adulthood. Model discrimination capacity was better in 
PBMAS (and BMDCS) than in ALSPAC, likewise entropy 
was high in PBMAS and low in ALSPAC and BMDCS 
(Additional file 3).

Discussion
Our results provide evidence on bone mineral accrual 
from 5 to 40 years. Linear and natural cubic spline LME  
and SITAR showed that the levels and rates of change in 
BMC were greater for males than females, with peak gains 
in adolescence in both, but later in males than females. 
Growth mixture (latent trajectory)  models (with trajec-
tory shapes estimated using natural cubic splines)  iden-
tified potentially distinct trajectory sub-groups, with the 
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(c) Linear Spline BMC Trajectory: PBMAS

Fig. 3 Mean BMC growth trajectory from the selected linear spline LME models. Figure shows the estimated mean BMC trajectory in females (black) 
and males (red) from linear spline LME models in ALSPAC (a), BMDCS (b), and PBMAS (c). Shaded areas around the mean trajectories represent 95% 
confidence intervals
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greatest between-group differences seen in adolescence. 
While the main aim of these analyses was to illustrate dif-
ferent modelling approaches, our results are consistent 

with previous studies on sex differences in BMC and sug-
gest that in both sexes puberty is an important period for 
peak bone accrual [38–40].
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(e) Natural Cubic Spline BMC Trajectory: PBMAS
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(d) Estimated BMC Velocity: BMDCS
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Fig. 4 Mean BMC growth trajectory (left panels) and mean BMC growth velocity and age at peak velocity (right panels) from the selected natural 
cubic spline LME models. Figure shows the estimated mean BMC trajectory (a, c, e) and mean BMC growth velocity (b, d, f) in females (black) and 
males (red) from natural cubic spline LME models in ALSPAC (a, b), BMDCS (c, d), and PBMAS (e, f). The vertical lines in subplots b, d, f represent the 
mean age at peak velocity. Shaded areas around the mean growth trajectories represent 95% confidence intervals
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Choosing a modelling approach
All the modelling techniques presented may be used to 
model BMC and other growth processes. Both spline 
LME models and SITAR were previously used on height/
weight/BMI [4, 26, 41, 42]; linear splines LME and SITAR 
models were previously used on bone density [38, 43]; 
linear and natural cubic spline LME were used to analyse 
blood pressure change [44, 45]. Choice of method will be 
determined by research question, including whether this 
is concerned with differences in mean change over time 
in the whole study population (where LME or SITAR 
may be useful), or if the aim is to identify data-driven 
population subgroups for patterns of change (where a 
latent trajectory model may be useful). Complexity of the 
underlying trajectory, and data availability i.e., number of 
individuals and repeat measurements will also influence 
choice of method (see [46, 47] for a discussion on sample 
size in growth models). All models presented can han-
dle unbalanced datasets (i.e., with individually varying 

measurement occasions, as in our example). If the data-
set is balanced (i.e., all measurements taken at the same 
schedule for everyone, e.g., participants are measured at 
exactly 2, 4, and 6 years of age), this will limit the com-
plexity of models that can be fitted.

When the main aim is to quantify growth rate at dif-
ferent periods of the life-course, then linear splines may 
be preferred because of their more interpretable slope 
coefficients compared to the natural cubic spline LME 
and SITAR models. If the aim is to describe the shape 
of the trajectory or identify specific peaks and troughs 
(e.g., age at peak velocity), then natural cubic spline 
LME or SITAR are more useful, because linear spline 
cannot identify points of maxima/minima (but can 
identify periods/age windows). The number and spac-
ing of repeated measures can influence model conver-
gence and the complexity that can be allowed [48, 49]. 
SITAR was designed to model adolescent growth in 
height, and (like other nonlinear models) its parameters 
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(c) SITAR BMC Trajectory and Velocity: BMDCS Females
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(d) SITAR BMC Trajectory and Velocity: BMDCS Males
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(e) SITAR BMC Trajectory and Velocity: PBMAS Females
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(f) SITAR BMC Trajectory and Velocity: PBMAS Males
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Fig. 5 Mean BMC growth trajectory (solid black curves), mean BMC growth velocity (dashed blue curves), and mean age at peak BMC velocity 
(vertical red lines) from the selected SITAR models. Figure shows the estimated mean BMC trajectory (solid black curves), mean BMC growth velocity 
(dashed blue curves) and mean age at peak BMC velocity (vertical red lines) from SITAR models in ALSPAC females (a) and males (b), BMDCS females 
(c) and males (d), and PBMAS females (e) and males (f)
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reflect its specific purpose. Hence, SITAR may not work 
well for complex trajectories (e.g., depressive symptoms 
[50]), and natural cubic spline LME may offer more 
flexible alternatives. Notable, SITAR fitted without the 
timing fixed effect (β0) is analogous to a random inter-
cept random slope model, and so should be at least 
as flexible as LME. A simple tactic that may improve 
SITAR (and optimise knot placement in LME models) 
is transforming the age scale [48, 51].

The regression splines presented have the advantage of 
being straightforward to estimate once the number/loca-
tion of knots is set, with the functions calculated by solv-
ing linear equations. If the number of knots is too small, 
the spline can be sensitive to knot location (and placing 
knots at quantiles or evenly spaced may not be useful) 
whereas if the number of knots is too large this can lead 
to overfitting. Penalised regression splines (introduced 

in the Methods) are highly flexible alternative functions 
which avoid the need for knot selection, though are less 
straightforward to estimate due to the uncertainty of the 
tuning parameter [12, 16, 17]. One powerful approach 
for applying penalised regression splines to describe 
population-average growth trajectories is using general-
ised additive mixed models (GAMM) [52–55]. Here, the 
linear predictor depends linearly on an unknown regres-
sion spline function of one or more covariates (e.g., time/
age) and a tuning parameter is estimated (by REML, 
generalised cross-validation or other approaches) and 
used to penalise the spline and avoid overfitting. When 
applied to PBMAS, a penalised regression spline GAMM 
estimated mean BMC growth trajectory and veloc-
ity curves that were broadly consistent with the curves 
obtained from regression spline LME and SITAR models 
(Fig. 8).
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Fig. 6 Overlayed mean BMC growth trajectories from the selected linear spline LME models, natural cubic spline LME models, and SITAR models. 
Figure shows the overlayed mean BMC growth trajectories from the selected linear spline LME models, natural cubic spline LME models, and SITAR 
models in ALSPAC females (a) and males (b), BMDCS females (c) and males (d), and PBMAS females (e) and males (f)
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Distinct from the LME and SITAR models, we used 
growth mixture models with a natural cubic spline to 
identify population subgroups with different nonlinear 
BMC trajectories. Linear splines with estimated knots 
[56, 57] and smoothing splines [58] have also been used 
to parameterise the nonlinear curve in these models 
(i.e., instead of the natural cubic spline). Latent trajec-
tory models (e.g., growth mixture models) have previ-
ously been used to identify trajectory subgroups for 
BMI [59], depressive symptoms [60], physical activity 
[61], glucose response [62], and environmental expo-
sures [63], among others. It can be challenging to deter-
mine the optimal number of latent classes/sub-groups, 
including whether the classes are meaningful or if the 
model is just splitting the distribution of the random 
effects into a larger group and smaller extremes. Model 
selection is often subjective, and trajectory subgroups 
can be cohort-specific and may not replicate in other 

cohorts therefore, it is important to follow established 
reporting guidelines [28].

Latent trajectory models will be most useful if there 
are strong reasons to hypothesise that a study popula-
tion is composed of multiple unknown sub-groups of 
individuals with distinct trajectories. Less complex 
latent trajectory models (e.g., group-based trajectory 
models) are computationally more efficient than growth 
mixture models though, any subgroup differences iden-
tified by such models may just reflect within class vari-
ability, which is likely to be absorbed by random effects 
in growth mixture models. If the aim was in  explor-
ing specific hypotheses (e.g., sensitive periods), then 
clustering (data driven) approaches may not provide 
a suitable sub-group to test this, e.g., if the aim was to 
explore the hypothesis that a lower birth weight fol-
lowed by faster growth in the first 1000 days increased 
cardiovascular risk, this approach might not identify 

Table 3 Estimated mean BMC growth velocity during different age windows from the selected linear spline LME models

Age windows are defined by the number and position of the knots, which were placed at quantiles of the age distribution

Grams per year change in BMC [(mean (95% CI)]

ALSPAC BMDCS PBMAS

Females

 8.8y to 11.4y (ALSPAC); 5.0y to 7.9y (BMDCS); 7.9y to 14.2y (PBMAS) 177.7 (173.8 to 181.6) 67.6 (60.1 to 75.1) 195.4 (189.7 to 201.1)

 11.4y to 13.9y (ALSPAC); 7.9y to 10.7y (BMDCS); 14.2y to 20.5y (PBMAS) 238.9 (236.0 to 241.7) 84.1 (79.0 to 89.2) 34.7 (30.0 to 39.5)

 13.9y to 16.4y (ALSPAC); 10.7y to 13.6y (BMDCS); 20.5y to 26.9y (PBMAS) 117.3 (113.2 to 121.3) 189.0 (184.7 to 193.3) −3.3 (− 7.5 to 0.9)

 16.4y to 18.9y (ALSPAC); 13.6y to 16.4y (BMDCS); 26.9y to 33.2y (PBMAS) 5.0 (−1.3 to 11.3) 85.7 (80.1 to 91.3) 9.1 (3.0 to 15.1)

 18.9y to 21.5y (ALSPAC); 16.4y to 19.3y (BMDCS); 33.2y to 39.5y (PBMAS) 99.2 (74.2 to 124.2) 17.4 (10.6 to 24.1) 5.2 (−5.9 to 16.3)

 21.5y to 24.0y (ALSPAC); 19.3y to 22.1y (BMDCS) 20.1 (− 7.0 to 47.2) 19.5 (11.1 to 27.8) –

 24.0y to 26.5y (ALSPAC) 15.2 (3.0 to 27.5) – –

Males

 8.8y to 12.3y (ALSPAC); 5.0y to 8.6y (BMDCS); 7.8y to 12.5y (PBMAS) 148.5 (144.2 to 150.8) 70.2 (61.7 to 78.7) 157.5 (144.2 to 170.8)

 12.3y to 15.9y (ALSPAC); 8.6y to 12.3y (BMDCS); 12.5y to 17.1y (PBMAS) 305.6 (302.5 to 308.8) 107.4 (101.7 to 113.1) 247.1 (238.7 to 255.4)

 15.9y to 19.4y (ALSPAC); 12.3y to 16.0y (BMDCS); 17.1y to 21.7y (PBMAS) 103.3 (98.6 to 108.0) 253.2 (248.4 to 258.0) 19.3 (8.9 to 29.7)

 19.4y to 23.0y (ALSPAC); 16.0y to 19.6y (BMDCS); 21.7y to 26.3y (PBMAS) 93.5 (84.1 to 102.8) 71.4 (63.3 to 79.5) 11.2 (0.8 to 21.6)

 23.0y to 26.5y (ALSPAC); 19.6y to 23.3y (BMDCS); 26.3y to 31.0y (PBMAS) 11.7 (−6.4 to 29.9) 8.0 (−3.5 to 19.6) 10.7 (−1.5 to 22.8)

 31.0y to 35.6y (PBMAS) – – −7.9 (−26.4 to 10.7)

 35.6y to 40.2y (PBMAS) – – −0.4 (−32.7 to 32.0)

Table 4 Estimated mean age at peak BMC velocity from the selected natural cubic spline LME models, and selected SITAR models. For 
comparison, the age windows for peak BMC velocity from the linear spline LME models are also presented

Females Males

ALSPAC BMDCS PBMAS ALSPAC BMDCS PBMAS

Mean age at peak BMC velocity (years)

 Natural cubic spline LME model 12.5 12.4 12.2 13.9 14.4 14.1

 SITAR model 12.1 12.5 12.0 13.8 14.1 13.9

age window for peak BMC velocity from the 
linear spline LME model (years)

11.4 to 13.9 10.7 to 13.6 7.9 to 14.2 12.3 to 15.9 12.3 to 16.0 12.5 to 17.1
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(e) BMC Latent Trajectories: PBMAS Females
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Fig. 7 Mean BMC growth trajectories by subgroup (latent class) from the selected growth mixture models. Figure shows the mean BMC growth 
trajectories by subgroup (latent class) from the selected growth mixture models in ALSPAC females (a) and males (b), BMDCS females (c) and males 
(d), and PBMAS females (e) and males (f). Colours distinguish between latent trajectory subgroups within subplots and should not be used to 
compare between subplots. Shaded areas around the mean trajectories represent 95% confidence intervals. The numbers in each class are: ALSPAC 
females (class 1: n = 2337, class 2: n = 531, class 3: n = 1139), ALSPAC males (class 1: n = 1339, class 2: n = 2549), BMDCS females (class 1: n = 101, 
class 2: n = 93, class 3: n = 294), BMDCS males (class 1: n = 176, class 2: n = 289), PBMAS females (class 1: n = 50, class 2: n = 19, class 3: n = 41, class 4: 
n = 17), PBMAS males (class 1: n = 42, class 2: n = 40, class 3: n = 30)
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a cluster with this specific growth pattern. There may 
also be value in using a combination of approaches [64], 
like in this paper.

Identifying determinants and outcomes of trajectories
The models in this paper can be extended to include 
early life exposures and later outcomes to explore their 
associations with trajectories. Choice of method will 
depend on the research aims. Exposure variables can be 

added within LME spline models as fixed effects and as 
interactions with splines to test their effect on trajecto-
ries and growth rate [3, 38, 65]. The individual growth 
features (e.g., peak velocity and age at peak velocity) can 
be obtained from spline LME model random effects and 
used in separate analyses as outcomes or exposures [18, 
66] – however, it is important to allow enough complex-
ity in the random-effects splines for sufficient between-
person variability (Fig. 9). Individual growth features can 
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Fig. 8 Using a penalised regression spline to describe mean BMC growth trajectory (top panel) and mean BMC growth velocity (bottom 
panel) in the PBMAS cohort. Figure shows mean BMC growth trajectory (a) and mean BMC velocity (b) obtained from a penalised regression 
spline generalised additive mixed model (GAMM) in PBMAS females and males. BMC growth trajectory was parameterised using a low rank 
(eigen‑decomposed) thin plate regression spline. Spline complexity was set at k = 7 and the tuning parameter (λ) was estimated by generalised 
cross‑validation. Growth velocity was estimated by differentiating the mean spline curve. Models included random intercepts and natural cubic 
spline random slopes. See the documentation for the ‘mgcv’ and ‘gamm4’ packages for more details on fitting GAMMs and available functionality
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be easily obtained from SITAR and used in subsequent 
analyses to examine associations with exposures or out-
comes [43, 67]. Of note, 2-stage approaches may be more 
biased than 1-stage joint model [68, 69]. Exposures and 
outcomes can be related to latent trajectories in a joint 
model or a multistage process where subgroups are first 
identified and subsequently used in separate models 
(unweighted or (preferably) weighed for classification 
probabilities) to examine associations [30, 59–63]. If the 
aim was to identify effects of repeated exposure, then a 
‘structured’ modelling approach may be useful for testing 
competing hypotheses [70].

It is important to identify potential biases and explore 
ways for mitigating them when analysing (causal) asso-
ciations between trajectories and exposures or outcomes 
in cohort studies. Missing data can bias associations 
depending on mechanism, and appropriate approaches to 
describe and handle missing data should be explored [12, 
71–76]. In a repeated measure setting, individuals with 
missing outcome values can be included in the estima-
tion sample if they have at least one observed outcome 
value. Mixed-effects models give unbiased results (i.e., 

not biased by missing data) when the probability that an 
outcome value is missing depends on observed values of 
the outcome (i.e., outcome missing at random (MAR) 
depending on observed outcome values). Bias due to 
missing data will occur for these models when the prob-
ability that the outcome is missing depends on underly-
ing missing values (i.e., outcome missing not at random 
(MNAR) depending on missing outcome values). With 
incomplete covariates, bias can occur when the probabil-
ity of excluding an individual with missing covariate data 
is related to the outcome. Regardless of bias, excluding 
individuals with missing covariate information will often 
mean discarding useful observed data, leading to impre-
cision [77].

Confounding can lead to spurious associations between 
trajectories and exposures or outcomes. Confound-
ers (factors causally related to exposure and outcome) 
should be identified (e.g., using Directed Acyclic Graphs) 
and controlled for, taking care not to adjust for media-
tors (factors on the causal pathways) [78, 79]. Even with 
adjustment, residual confounding (from using poorly 
measured confounders or not adjusting for important 
confounders) can bias results. Some useful strategies 
for checking if residual confounding influences results 
include using negative control variables and comparing 
results across cohorts with different confounding struc-
tures [64, 80–82].

Comparing and modelling trajectories across cohorts
Researchers should be aware of potential differences 
in the participants, data collection methods and analy-
sis models when comparing trajectories from different 
studies. For example, the higher BMC due to the Lunar 
machine in ALSPAC means it is inaccurate to conclude 
that Britons had higher BMC (and peak BMC veloc-
ity) than North Americans. Another example is the 
effect of medication use by older cohorts on combined 
blood pressure trajectories [83]. New and existing mul-
ticohort collaborations provide unique opportunities to 
jointly model such trajectories across different cohorts 
and to extend the amount of the life course studied [84, 
85]. However, this also generates additional challenges 
including on model selection and missing data (see [86] 
for a discussion of challenges and solutions to multico-
hort modelling). Whatever approach is taken (cohort-
specific or multicohort modelling), data harmonisation 
is an important initial step that involves making data 
comparable across studies [87, 88], e.g. using DXA ref-
erence standards to harmonise BMC [89]. Because age 
(but not BMC) was fully harmonised in our example, a 
simple approach to obtaining valid pooled estimate of 
age at peak BMC velocity is to fit a growth model to all 
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Fig. 9 Effect of increasing the number of knots in the random effects 
spline on the individual growth velocity curves from the natural 
cubic spline LME model. Figure shows velocity curves for 5 randomly 
selected individuals, obtained from natural cubic spline LME models 
in PBMAS males with 2, 4, and 6 knots for the random effects spline 
curve. All models included 6 knots in the fixed effects spline curve. All 
knots were placed at quantiles of age distribution
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individuals with BMC expressed in cohort-specific SD 
units (Fig. 10).

Conclusions
LME models with linear and natural cubic splines, 
SITAR, and growth mixture models are useful for 
describing nonlinear growth trajectories in longitudinal 
population studies, and these methods can be adapted 
to other complex traits. Choice of method depends on 
research aims, complexity of the trajectory, and available 

data. This illustrative paper and accompanying R analy-
sis code and example datasets will we hope be a useful 
resource for researchers interested in modelling nonlin-
ear longitudinal trajectories.

Abbreviations
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Fig. 10 Pooled mean BMC growth trajectory (solid black curves), mean BMC growth velocity (dashed blue curves), and mean age at peak BMC 
velocity (vertical red lines) from SITAR models applied to individual participant data (ALSPAC, BMDCS and PBMAS). Figure shows mean BMC growth 
trajectory (solid black curves), mean BMC growth velocity (dashed blue curves), and mean age at peak BMC velocity (vertical red lines) from SITAR 
models applied to individual participant data (ALSPAC, BMDCS and PBMAS) for females (a) and males (b). Sex‑specific individual participant data 
SITAR models were fitted to ALSPAC, BMDCS and PBMAS combined, to obtained pooled estimates of the timing of peak BMC growth. This analysis 
included individuals with overlapping measurements (8.8 to 22.1 years) from the 3 cohorts (n=4431 for females and n=4359 for males.) To mitigate 
the cohort differences in BMC (higher values in ALSPAC due to Lunar machine), we modelled BMC in cohort‑specific standardised units (mean=0 
and SD=1), and the models were adjusted for cohort (as a fixed effect). Note it is not advised to fit SITAR to SD units as this distorts the underlying 
biology – though in our example, results are consistent with cohort‑specific natural unit results



Page 18 of 20Elhakeem et al. BMC Medical Research Methodology           (2022) 22:68 

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12874‑ 022‑ 01542‑8.

Additional file 1. Cohort characteristics and participant numbers, and 
age and BMC at each visit.

Additional file 2. BIC and fit statistics for linear spline LME models, natural 
cubic spline LME models, and SITAR models with 2 to 6 knots in the fixed 
effects spline curve.

Additional file 3. Fit statistics and predicted mean BMC latent trajectories 
for growth mixture models with 1 to 5 latent classes.

Acknowledgments
We thank the study participants from each cohort who took part in this study 
and the scientific and data collection teams from the ALSPAC, BMDCS and 
PBMAS cohorts. We are extremely grateful to all the families who took part 
in the ALSPAC study, the midwives for their help in recruiting them, and the 
whole ALSPAC team, which includes interviewers, computer and labora‑
tory technicians, clerical workers, research scientists, volunteers, managers, 
receptionists and nurses. We acknowledge the BMDCS Principal Investigators: 
Vicente Gilsanz, MD, PhD, Heidi Kalkwarf, PhD, Joan Lappe, PhD, Sharon Ober‑
field, MD, John Shepherd, PhD, and the National Institute of Child Health and 
Human Development (NICHD) Data and Specimen Hub (DASH) for providing 
the BMDCS data that was used for this research.

Authors’ contributions
AE developed the idea for the paper with initial input from DAL and with fur‑
ther development from RAH, KMT, DLC, SAJ, TJC ASFK, ZL, SAF, ADGB, BSZ. AE 
conducted the analysis and wrote the first draft of the manuscript with initial 
input from DAL. RAH, KMT, TJC, and ZL provided advice on the description 
and interpretation of statistical methods. AE, RAH, KMT, DLC, SAJ, TJC ASFK, ZL, 
SAF, ADGB, BSZ, and DAL contributed to the development of the draft to its 
final version. ZL developed an R package to help complete this work (Package 
‘spluti’ – Utility Functions for Post‑Processing Univariate Interpolation Splines, 
Smoothing Splines and Regression Splines: https:// github. com/ Zheyu anLi/ 
spluti). The author(s) read and approved the final manuscript.

Funding
This project has received funding from the European Union’s Horizon 2020 
research and innovation programme under grant agreements No. 874739 
(LongITools) and No. 733206 (LifeCycle). AE, KMT, RAH and DAL work in a unit 
that is supported by the University of Bristol and UK Medical Research Council 
(MC_UU_00011/3 & MC_UU_00011/3). RAH is supported by a Sir Henry Dale 
Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant 
Number 215408/Z/19/Z). ASFK is supported by an Economic Social Research 
Council Postdoctoral Fellowship (Grant ref.: ES/V011650/1). The UK Medical 
Research Council and Wellcome (Grant Ref: 102215/2/13/2) and the University 
of Bristol provide core support for ALSPAC. A comprehensive list of grant fund‑
ing is available on the ALSPAC website (http:// www. brist ol. ac. uk/ alspac/ exter 
nal/ docum ents/ grant‑ ackno wledg ements. pdf ). PBMAS was supported in part 
by funding from the Canadian Institutes of Health Research, the Saskatchewan 
Health Research Foundation (SHRF), The Dairy Farmers of Canada and the 
University of Saskatchewan. This research reflects only the authors’ view, and 
the European Commission is not responsible for any use that may be made of 
the information it contains. The funders had no role in the design or conduct 
of the study, nor management, analysis, and interpretation of the data, or the 
decision to submit the manuscript for publication.

Availability of data and materials
All the analysis code used in this paper can be found at https:// github. com/ 
aelhak/ nltmr/. Details of all available data and the processes and procedures 
involved in accessing the ALSPAC resource can be found in the ALSPAC study 
website, which includes a fully searchable data dictionary and variable search 
tool (http:// www. brist ol. ac. uk/ alspac/ resea rchers/ our‑ data/). The BMDCS data 
can be accessed through the NICHD DASH website (https:// dash. nichd. nih. 
gov/). Researchers interested in accessing the PBMAS data should contact 
Professor Adam DG Baxter‑Jones (baxter. jones@ usask. ca).

Declarations

Ethics approval and consent to participate
All cohorts had ethical approval from their relevant local or national ethics 
committees. The Avon Longitudinal Study of Parents and Children (ALSPAC) 
obtained ethics approval from the ALSPAC Law and Ethics committee and the 
local National Health Service Research Ethics Committee. The Bone Mineral 
Density in Childhood Study (BMDCS) study was approved by the Institutional 
Review Board of each clinical center: Children Hospital of Los Angeles (Los 
Angeles, CA), Cincinnati Children Hospital Medical Center (Cincinnati, OH), 
Creighton University (Omaha, NE), Children Hospital of Philadelphia (CHOP) 
(Philadelphia, PA), and Columbia University (New York, NY). The Pediatric 
Bone Mineral Accrual Study (PBMAS) study was approved by the University of 
Saskatchewan’s biomedical review committee.
All study participants gave written informed consent to participate in the 
respective cohorts and secondary data analyses.

Consent for publication
All study participants gave written informed consent to participate in 
the respective cohorts and secondary data analyses.

Competing interests
DAL reported grants from national and international government and charity 
funders, Roche Diagnostics, and Medtronic Ltd. for work unrelated to this pub‑
lication. KMT reported grants from national and international government and 
charity funders, for work unrelated to this publication. No other disclosures 
were reported.

Author details
1 MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK. 
2 Population Health Sciences, Bristol Medical School, University of Bristol, 
Bristol, UK. 3 Division of Human Genetics, Children’s Hospital of Philadelphia, 
Philadelphia, PA, USA. 4 Department of Genetics, University of Pennsylvania, 
Philadelphia, PA, USA. 5 Center for Spatial and Functional Genomics, Children’s 
Hospital of Philadelphia, Philadelphia, PA, USA. 6 College of Kinesiology, Univer‑
sity of Saskatchewan, Saskatoon, Saskatchewan, Canada. 7 Children’s Hospital 
of Eastern Ontario Research Institute, Ottawa, Ontario, Canada. 8 UCL Great 
Ormond Street Institute of Child Health, London, UK. 9 Division of Psychiatry, 
Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK. 
10 School of Mathematics and Statistics, Henan University, Kaifeng, Henan, 
China. 11 Department of Statistics and Actuarial Sciences, Simon Fraser Univer‑
sity, Burnaby, BC, Canada. 12 Department of Pediatrics, University of Pennsylva‑
nia Perelman School of Medicine, Philadelphia, PA, USA. 13 Division of Endocri‑
nology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA, USA. 
14 Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital 
of Philadelphia, Philadelphia, PA, USA. 

Received: 18 June 2021   Accepted: 11 February 2022

References
 1. Ben‑Shlomo Y, Cooper R, Kuh D. The last two decades of life course 

epidemiology, and its relevance for research on ageing. Int J Epidemiol. 
2016;45(4):973–88.

 2. Grimm KJ, Ram N, Hamagami F. Nonlinear growth curves in developmen‑
tal research. Child Dev. 2011;82(5):1357–71.

 3. Howe LD, Tilling K, Matijasevich A, Petherick ES, Santos AC, Fairley L, et al. 
Linear spline multilevel models for summarising childhood growth trajec‑
tories: a guide to their application using examples from five birth cohorts. 
Stat Methods Med Res. 2016;25(5):1854–74.

 4. Lourenço BH, Villamor E, Augusto RA, Cardoso MA. Influence of early life 
factors on body mass index trajectory during childhood: a population‑
based longitudinal analysis in the Western Brazilian Amazon. Matern 
Child Nutr. 2015;11(2):240–52.

 5. Cole TJ, Donaldson MD, Ben‑Shlomo Y. SITAR‑‑a useful instrument for 
growth curve analysis. Int J Epidemiol. 2010;39(6):1558–66.

https://doi.org/10.1186/s12874-022-01542-8
https://doi.org/10.1186/s12874-022-01542-8
https://github.com/ZheyuanLi/spluti
https://github.com/ZheyuanLi/spluti
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
http://www.bristol.ac.uk/alspac/external/documents/grant-acknowledgements.pdf
https://github.com/aelhak/nltmr/
https://github.com/aelhak/nltmr/
http://www.bristol.ac.uk/alspac/researchers/our-data/
https://dash.nichd.nih.gov/
https://dash.nichd.nih.gov/
baxter.jones@usask.ca


Page 19 of 20Elhakeem et al. BMC Medical Research Methodology           (2022) 22:68  

 6. Herle M, Micali N, Abdulkadir M, Loos R, Bryant‑Waugh R, Hübel C, et al. 
Identifying typical trajectories in longitudinal data: modelling strategies 
and interpretations. Eur J Epidemiol. 2020;35(3):205–22.

 7. Sauerbrei W, Abrahamowicz M, Altman DG, le Cessie S, Carpenter J, initia‑
tive obotS. STRengthening analytical thinking for observational studies: 
the STRATOS initiative. Stat Med. 2014;33(30):5413–32.

 8. Tu YK, Tilling K, Sterne JA, Gilthorpe MS. A critical evaluation of statistical 
approaches to examining the role of growth trajectories in the develop‑
mental origins of health and disease. Int J Epidemiol. 2013;42(5):1327–39.

 9. Curran PJ, Obeidat K, Losardo D. Twelve frequently asked questions about 
growth curve modeling. J Cogn Dev. 2010;11(2):121–36.

 10. Macdonald‑Wallis C, Lawlor DA, Palmer T, Tilling K. Multivariate multilevel 
spline models for parallel growth processes: application to weight and 
mean arterial pressure in pregnancy. Stat Med. 2012;31(26):3147–64.

 11. Twisk JW. Longitudinal data analysis. A comparison between generalized 
estimating equations and random coefficient analysis. Eur J Epidemiol. 
2004;19(8):769–76.

 12. Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G. Longitudinal 
data analysis. USA: Chapman & Hall/CRC; 2009.

 13. Laird NM, Ware JH. Random‑effects models for longitudinal data. Biom‑
etrics. 1982;38(4):963–74.

 14. Goldstein H, De Stavola B. Statistical modelling of repeated measure‑
ment data. Longitud Life Course Stud. 2010;1(2):170–85.

 15. Cole TJ: sitar: Super Imposition by Translation and Rotation growth 
curve analysis. R package version 1.2.0. 2021. https:// cran.r‑ proje ct. org/ 
web/ packa ges/ sitar/ index. html.

 16. Perperoglou A, Sauerbrei W, Abrahamowicz M, Schmid M. A review of 
spline function procedures in R. BMC Med Res Methodol. 2019;19(1):46.

 17. Suk HW, West SG, Fine KL, Grimm KJ. Nonlinear growth curve modeling 
using penalized spline models: a gentle introduction. Psychol Meth‑
ods. 2019;24(3):269–90.

 18. Aris IM, Bernard JY, Chen LW, Tint MT, Pang WW, Lim WY, et al. 
Infant body mass index peak and early childhood cardio‑metabolic 
risk markers in a multi‑ethnic Asian birth cohort. Int J Epidemiol. 
2017;46(2):513–25.

 19. Fonseca MJ, Moreira C, Santos AC. Adiposity rebound and cardiometa‑
bolic health in childhood: results from the generation XXI birth cohort. 
Int J Epidemiol. 2021;50(4):1260‑71.

 20. Harrell F. Regression modeling strategies with applications to linear 
models, logistic regression, and survival analysis. 1st ed. New York: 
Springer; 2001.

 21. Desquilbet L, Mariotti F. Dose‑response analyses using restricted 
cubic spline functions in public health research. Stat Med. 
2010;29(9):1037–57.

 22. Mackenzie ML, Donovan CR, McArdle BH. Regression spline mixed mod‑
els: A forestry example. J Agric Biol Environ Stat. 2005;10(4):394.

 23. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical 
learning with applications in R. New York: Springer; 2017.

 24. Naumova EN, Must A, Laird NM. Tutorial in biostatistics: evaluating the 
impact of ‘critical periods’ in longitudinal studies of growth using piece‑
wise mixed effects models. Int J Epidemiol. 2001;30(6):1332–41.

 25. Beath KJ. Infant growth modelling using a shape invariant model with 
random effects. Stat Med. 2007;26(12):2547–64.

 26. Cole TJ, Kuh D, Johnson W, Ward KA, Howe LD, Adams JE, et al. Using 
super‑imposition by translation and rotation (SITAR) to relate pubertal 
growth to bone health in later life: the Medical Research Council (MRC) 
National Survey of health and development. Int J Epidemiol. 2016.

 27. Berlin KS, Parra GR, Williams NA. An introduction to latent variable mixture 
modeling (part 2): longitudinal latent class growth analysis and growth 
mixture models. J Pediatr Psychol. 2013;39(2):188–203.

 28. van de Schoot R, Sijbrandij M, Winter SD, Depaoli S, Vermunt JK. The 
GRoLTS‑checklist: guidelines for reporting on latent trajectory studies. 
Struct Equ Model Multidiscip J. 2017;24(3):451–67.

 29. Lennon H, Kelly S, Sperrin M, Buchan I, Cross AJ, Leitzmann M, et al. 
Framework to construct and interpret latent class trajectory modelling. 
BMJ Open. 2018;8(7):e020683.

 30. Proust‑Lima C, Philipps V, Liquet B. Estimation of extended mixed models 
using latent classes and latent processes: the R package lcmm. J Stat 
Softw. 2017;1(Issue 2):2017.

 31. Harvey N, Dennison E, Cooper C. Osteoporosis: a lifecourse approach. J 
Bone Miner Res. 2014;29(9):1917–25.

 32. Fraser A, Macdonald‑Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, 
et al. Cohort profile: the Avon longitudinal study of parents and children: 
ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.

 33. Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. 
Cohort profile: the ‘children of the 90s’‑the index offspring of the 
Avon longitudinal study of parents and children. Int J Epidemiol. 
2013;42(1):111–27.

 34. McCormack SE, Cousminer DL, Chesi A, Mitchell JA, Roy SM, Kalkwarf HJ, 
et al. Association between linear growth and bone accrual in a diverse 
cohort of children and adolescents. JAMA Pediatr. 2017;171(9):e171769.

 35. Baxter‑Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone 
mineral accrual from 8 to 30 years of age: an estimation of peak bone 
mass. J Bone Miner Res. 2011;26(8):1729–39.

 36. Nowok B, Raab GM, Dibben C. synthpop: bespoke creation of synthetic 
data in R. J Stat Softw. 2016;74(11):26.

 37. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed‑effects models 
using lme4. J Stat Software. 2015;67(1):1–48. https:// doi. org/ 10. 18637/ jss. 
v067. i01.

 38. Elhakeem A, Frysz M, Tilling K, Tobias JH, Lawlor DA. Association between 
age at puberty and bone accrual from 10 to 25 years of age. JAMA Netw 
Open. 2019;2(8):e198918.

 39. Jackowski SA, Erlandson MC, Mirwald RL, Faulkner RA, Bailey DA, Kontu‑
lainen SA, et al. Effect of maturational timing on bone mineral content 
accrual from childhood to adulthood: evidence from 15 years of longitu‑
dinal data. Bone. 2011;48(5):1178–85.

 40. Cousminer DL, Mitchell JA, Chesi A, Roy SM, Kalkwarf HJ, Lappe JM, et al. 
Genetically determined later puberty impacts lowered bone mineral 
density in childhood and adulthood. J Bone Miner Res. 2018;33(3):430–6.

 41. Khera AV, Chaffin M, Wade KH, Zahid S, Brancale J, Xia R, et al. Polygenic 
prediction of weight and obesity trajectories from birth to adulthood. 
Cell. 2019;177(3):587–596.e589.

 42. Jensen SM, Ritz C, Ejlerskov KT, Mølgaard C, Michaelsen KF. Infant BMI 
peak, breastfeeding, and body composition at age 3 y. Am J Clin Nutr. 
2014;101(2):319–25.

 43. Cousminer DL, Wagley Y, Pippin JA, Elhakeem A, Way GP, Pahl MC, et al. 
Genome‑wide association study implicates novel loci and reveals candi‑
date effector genes for longitudinal pediatric bone accrual. Genome Biol. 
2021;22(1):1.

 44. O’Keeffe LM, Simpkin AJ, Tilling K, Anderson EL, Hughes AD, Lawlor DA, 
et al. Sex‑specific trajectories of measures of cardiovascular health during 
childhood and adolescence: a prospective cohort study. Atherosclerosis. 
2018;278:190–6.

 45. Lambert PC, Abrams KR, Jones DR, Halligan AW, Shennan A. Analysis of 
ambulatory blood pressure monitor data using a hierarchical model 
incorporating restricted cubic splines and heterogeneous within‑subject 
variances. Stat Med. 2001;20(24):3789–805.

 46. Snijders T. Power and sample size in multilevel modeling. In: Everitt BS, 
Howell DC, editors. Encyclopedia of Statistics in Behavioral Science. 
Chicester: Wiley; 2005.

 47. Guo Y, Logan HL, Glueck DH, Muller KE. Selecting a sample size for studies 
with repeated measures. BMC Med Res Methodol. 2013;13(1):100.

 48. Simpkin AJ, Sayers A, Gilthorpe MS, Heron J, Tilling K. Modelling height 
in adolescence: a comparison of methods for estimating the age at peak 
height velocity. Ann Hum Biol. 2017;44(8):715–22.

 49. Tilling K, Macdonald‑Wallis C, Lawlor DA, Hughes RA, Howe LD. Modelling 
childhood growth using fractional polynomials and linear splines. Ann 
Nutr Metab. 2014;65(2–3):129–38.

 50. Kwong ASF, Manley D, Timpson NJ, Pearson RM, Heron J, Sallis H, et al. 
Identifying critical points of trajectories of depressive symptoms from 
childhood to young adulthood. J Youth Adolesc. 2019;48(4):815–27.

 51. Cole TJ. Optimal design for longitudinal studies to estimate pubertal 
height growth in individuals. Ann Hum Biol. 2018;45(4):314–20.

 52. Wood SN. Generalized additive models an introduction with R. 2nd ed: 
Chapman & Hall/CRC; USA: 2017.

 53. Pedersen EJ, Miller DL, Simpson GL, Ross N. Hierarchical generalized addi‑
tive models in ecology: an introduction with mgcv. PeerJ. 2019;7:e6876.

 54. Wood SN. mgcv: Mixed GAM Computation Vehicle with Automatic 
Smoothness Estimation. 2021. p. 1.8‑136 https:// cran.r‑ proje ct. org/ web/ 
packa ges/ mgcv/ index. html.

https://cran.r-project.org/web/packages/sitar/index.html
https://cran.r-project.org/web/packages/sitar/index.html
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/mgcv/index.html


Page 20 of 20Elhakeem et al. BMC Medical Research Methodology           (2022) 22:68 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 55. Wood SN, Scheipl F. gamm4: generalized additive mixed models using 
‘mgcv’and ‘lme4’; 2017. p. 0.2–5. http:// cran. nexr. com/ web/ packa ges/ 
gamm4/ index. html

 56. Kohli N, Harring JR, Zopluoglu C. A finite mixture of nonlinear random 
coefficient models for continuous repeated measures data. Psycho‑
metrika. 2016;81(3):851–80.

 57. Lock EF, Kohli N, Bose M. Detecting multiple random changepoints 
in Bayesian piecewise growth mixture models. Psychometrika. 
2018;83(3):733–50.

 58. Ding M, Chavarro JE, Fitzmaurice GM. Development of a mixture model 
allowing for smoothing functions of longitudinal trajectories. Stat Meth‑
ods Med Res. 2021;30(2):549–62.

 59. Buscot M‑J, Thomson RJ, Juonala M, Sabin MA, Burgner DP, Lehtimäki T, 
et al. Distinct child‑to‑adult body mass index trajectories are associ‑
ated with different levels of adult cardiometabolic risk. Eur Heart J. 
2018;39(24):2263–70.

 60. Kwong ASF, Lopez‑Lopez JA, Hammerton G, Manley D, Timpson NJ, 
Leckie G, et al. Genetic and environmental risk factors associated with tra‑
jectories of depression symptoms from adolescence to young adulthood. 
JAMA Netw Open. 2019;2(6):e196587.

 61. Elhakeem A, Heron J, Tobias JH, Lawlor DA. Physical activity throughout 
adolescence and peak hip strength in young adults. JAMA Netw Open. 
2020;3(8):e2013463.

 62. Hulman A, Witte DR, Vistisen D, Balkau B, Dekker JM, Herder C, et al. 
Pathophysiological characteristics underlying different glucose response 
curves: a latent class trajectory analysis from the prospective EGIR‑RISC 
study. Diabetes Care. 2018;41(8):1740–8.

 63. Lévêque E, Lacourt A, Philipps V, Luce D, Guénel P, Stücker I, et al. A new 
trajectory approach for investigating the association between an envi‑
ronmental or occupational exposure over lifetime and the risk of chronic 
disease: application to smoking, asbestos, and lung cancer. Plos One. 
2020;15(8):e0236736.

 64. Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemi‑
ology. Int J Epidemiol. 2016;45(6):1866–86.

 65. Madden JM, Li X, Kearney PM, Tilling K, Fitzgerald AP. Exploring diurnal 
variation using piecewise linear splines: an example using blood pres‑
sure. Emerg Themes Epidemiol. 2017;14:1–1.

 66. Brilleman SL, Howe LD, Wolfe R, Tilling K. Bayesian piecewise linear mixed 
models with a random change point: an application to BMI rebound in 
childhood. Epidemiology. 2017;28(6):827–33.

 67. Crozier SR, Johnson W, Cole TJ, Macdonald‑Wallis C, Muniz‑Terrera G, 
Inskip HM, et al. A discussion of statistical methods to characterise early 
growth and its impact on bone mineral content later in childhood. Ann 
Hum Biol. 2019;46(1):17–26.

 68. Sayers A, Heron J, Smith A, Macdonald‑Wallis C, Gilthorpe MS, Steele F, 
et al. Joint modelling compared with two stage methods for analysing 
longitudinal data and prospective outcomes: a simulation study of child‑
hood growth and BP. Stat Methods Med Res. 2017;26(1):437–52.

 69. Parker RMA, Leckie G, Goldstein H, Howe LD, Heron J, Hughes AD, et al. 
Joint modeling of individual trajectories, within‑individual variability, 
and a later outcome: systolic blood pressure through childhood and left 
ventricular mass in early adulthood. Am J Epidemiol. 2021;190(4):652‑62.

 70. Smith AD, Hardy R, Heron J, Joinson CJ, Lawlor DA, Macdonald‑Wallis C, 
et al. A structured approach to hypotheses involving continuous expo‑
sures over the life course. Int J Epidemiol. 2016;45(4):1271–9.

 71. Lee KJ, Tilling K, Cornish RP, Little RJ, Bell ML, Goetghebeur E, et al. Frame‑
work for the treatment and reporting of missing data in observational 
studies: the TARMOS framework. J Clin Epidemiol. 2021;134:79‑88

 72. van Buuren S. Flexible imputation of missing data. 2nd ed. Chapman & 
Hall/CRC. USA; 2018.

 73. Matteo Quartagno SG, Carpenter J. jomo: a flexible package for two‑level 
joint modelling multiple imputation. R J. 2019;11(2):205–28.

 74. Hughes RA, Heron J, Sterne JAC, Tilling K. Accounting for missing data 
in statistical analyses: multiple imputation is not always the answer. Int J 
Epidemiol. 2019;48(4):1294–304.

 75. Twisk J, de Boer M, de Vente W, Heymans M. Multiple imputation of miss‑
ing values was not necessary before performing a longitudinal mixed‑
model analysis. J Clin Epidemiol. 2013;66(9):1022–8.

 76. Huque MH, Carlin JB, Simpson JA, Lee KJ. A comparison of multiple 
imputation methods for missing data in longitudinal studies. BMC Med 
Res Methodol. 2018;18(1):168.

 77. Huque MH, Moreno‑Betancur M, Quartagno M, Simpson JA, Carlin JB, Lee 
KJ. Multiple imputation methods for handling incomplete longitudinal 
and clustered data where the target analysis is a linear mixed effects 
model. Biom J. 2020;62(2):444–66.

 78. VanderWeele TJ. Principles of confounder selection. Eur J Epidemiol. 
2019;34(3):211–9.

 79. Groenwold RHH, Palmer TM, Tilling K. To Adjust or Not to Adjust? 
When a "Confounder" Is Only Measured After Exposure. Epidemiology. 
2021;32(2):194‑201. https:// doi. org/ 10. 1097/ EDE. 00000 00000 001312.

 80. Lipsitch M, Tchetgen Tchetgen E, Cohen T. Negative controls: a tool for 
detecting confounding and bias in observational studies. Epidemiology. 
2010;21(3):383–8.

 81. Taylor K, Elhakeem A, Nader JLT, Yang T, Isaevska E, Richiardi L, et al. Effect 
of maternal prepregnancy/early‑pregnancy BMI and pregnancy smoking 
and alcohol on congenital heart diseases: a parental negative control 
study. J Am Heart Assoc. 2021;10(11):e020051

 82. Brion MJ, Lawlor DA, Matijasevich A, Horta B, Anselmi L, Araújo CL, et al. 
What are the causal effects of breastfeeding on IQ, obesity and blood 
pressure? Evidence from comparing high‑income with middle‑income 
cohorts. Int J Epidemiol. 2011;40(3):670–80.

 83. Wills AK, Lawlor DA, Matthews FE, Aihie Sayer A, Bakra E, Ben‑Shlomo Y, 
et al. Life course trajectories of systolic blood pressure using longitudinal 
data from eight UK cohorts. PLoS Med. 2011;8(6):e1000440.

 84. Jaddoe VWV, Felix JF, Andersen AN, Charles MA, Chatzi L, Corpeleijn E, 
et al. The LifeCycle project‑EU child cohort network: a federated analysis 
infrastructure and harmonized data of more than 250,000 children and 
parents. Eur J Epidemiol. 2020;35(7):709–24.

 85. Ronkainen J, Nedelec R, Atehortua A, Balkhiyarova Z, Zhanna A, Dang V, 
et al. LongITools: dynamic longitudinal exposome trajectories in cardio‑
vascular and metabolic non‑communicable diseases. Environ Epidemiol. 
2021;6(1):e184. https:// doi. org/ 10. 1097/ EE9. 00000 00000 000184.

 86. Hughes RA, Tilling K, Lawlor DA. Combining longitudinal data from 
different cohorts to examine the life‑course trajectory. Am J Epidemiol. 
2021;190(12):2680‑9.

 87. Pinot de Moira A, Haakma S, Strandberg‑Larsen K, van Enckevort E, 
Kooijman M, Cadman T, et al. The EU Child Cohort Network’s core data: 
establishing a set of findable, accessible, interoperable and re‑usable 
(FAIR) variables. Eur J Epidemiol. 2021;36(5):565–80.

 88. Nader JL, López M, Julvez J, Guxens M, Cadman T, Elhakeem A, et al. 
Cohort description: measures of early‑life behaviour and later psychopa‑
thology in the LifeCycle project ‑ EU child cohort network. J Epidemiol. 
2021. (Epub ahead of print). https:// doi. org/ 10. 2188/ jea. JE202 10241.

 89. Baxter‑Jones AD, Burrows M, Bachrach LK, Lloyd T, Petit M, Macdonald H, 
et al. International longitudinal pediatric reference standards for bone 
mineral content. Bone. 2010;46(1):208–16.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://cran.nexr.com/web/packages/gamm4/index.html
http://cran.nexr.com/web/packages/gamm4/index.html
https://doi.org/10.1097/EDE.0000000000001312
https://doi.org/10.1097/EE9.0000000000000184
https://doi.org/10.2188/jea.JE20210241

	Using linear and natural cubic splines, SITAR, and latent trajectory models to characterise nonlinear longitudinal growth trajectories in cohort studies
	Abstract 
	Background: 
	Methods: 
	Results: 
	Conclusions: 

	Background
	Methods
	Modelling nonlinear growth
	Mixed-effects models
	Moving beyond a linear trajectory
	Spline functions
	Linear spline LME models
	Natural cubic spline LME models
	Choosing number and location of knots
	SITAR models
	Latent trajectory models
	Illustrative example
	Bone mass through the life course
	Studies and measurements
	Statistical analysis


	Results
	Discussion
	Choosing a modelling approach
	Identifying determinants and outcomes of trajectories
	Comparing and modelling trajectories across cohorts

	Conclusions
	Acknowledgments
	References


