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Introduction 

For decades, researchers have accumulated strong evidence of associations between in utero and early 
growth and health throughout life. Recently, studies investigating the genetic variation associated with 
early growth have brought these lifelong health links into focus, both in terms of individual genetic loci 
associated with early growth traits and later health outcomes, and when comparing the genome-wide 
association landscape between traits using genetic correlation analyses(1). In addition, genetic studies 
can be informative for uncovering key biological pathways and in determining the causal effects of 
genetic and environmental exposures. Here, we review major advances of the past two years, and 
highlight areas where studies should place additional focus in the near future. 

 

Studies of birth weight taking maternal genotype into account 

Over the last decade, studies of increasing size and diversity have investigated the genetic 
underpinnings of birth weight. In the last two years, a major advance is in our ability to estimate, for a 
genome-wide set of SNPs, the direct fetal effects on birth weight and the independent maternal genetic 
effects that act indirectly via the uterine environment. This advance was made possible by (i) 
aggregation of genome-wide association studies (GWAS) with maternal genotypes and offspring birth 
weight(2) in addition to studies with own (fetal) genotype and own birth weight, and (ii) the 
development of a new genome-wide method to estimate independent maternal and fetal effects on 
birth weight in the absence of large numbers of genotyped mother-child pairs(3). The most recent 
GWAS of birth weight estimated independent maternal and fetal effects at 190 genome-wide significant 
loci(4). Variance in birth weight explained by these loci showed a greater fetal than maternal 
component, with more than three-quarters of the variance attributable to direct fetal genotype effects. 
While causal genes and underlying functional variants remain largely unknown, there was a strong 
overlap of fetal genetic loci with the genetics of childhood and adult height, and enrichment for 
imprinted genes and those involved in IGF-1 and insulin signaling.  

Many identified loci showed evidence of independent contributions from both mother and fetus: of the 
138 lead SNPs that could be confidently classified as having maternal and/or fetal effects, 30% showed 
evidence of both a direct fetal and an indirect maternal effect. For one-third of those, the maternal and 
fetal effects were in opposite directions. Examples of loci with opposite maternal and fetal effects on 



birth weight include those at established glycemic trait loci, such as G6PC2, ADCY5 and CDKAL1. At those 
loci, fetal insulin is a likely mediator, given the paradigm maternal and fetal birth weight effects of rare 
mutations in the glucokinase gene(5). However, for most loci, the underlying mechanism is unknown, 
and current evidence suggests that fetal growth attributable to fetal effects at most birth weight-
associated loci is not insulin-mediated(6). 

 

Early growth traits assessed by longitudinal approaches 

Recent genetic studies have included postnatal longitudinal approaches to discovering novel loci. Many 
longitudinal studies have focused on changes in adiposity and BMI. For example, two studies 
investigating early life adiposity found similar associations at the LEPR locus prior to age 5 years, with 
different genetic loci influencing later childhood and adult BMI(7,8). In a separate study, application of a 
genetic risk score (GRS) based on adult BMI to a pediatric cohort showed similar patterns of association 
from infancy to later childhood: the adult BMI-derived GRS was not associated with birth weight, but 
became increasingly associated with BMI across childhood(9). However, a study of normal variation in 
childhood BMI assessed between the ages of 2 and 10 years old observed a genetic correlation with 
both birth weight and adult BMI(10). Collectively, these studies suggest that, although some loci 
influence weight from birth through to adulthood, the mechanisms influencing body mass shift during 
early childhood, after which they remain relatively constant throughout adolescence and into 
adulthood. Additionally, there is some evidence that BMI-associated variants may have varying effects 
across adulthood, as reported in a candidate study of the association of 282 variants with BMI at age 20 
and change in BMI during adulthood in the Japanese(11).  

In addition to 25 loci associated with childhood BMI(10), assessing obesity as a dichotomous trait [with 
cases defined as having BMI ≥95th percentile and controls being consistently <50th percentile] in youth 
aged 2-18 years revealed a novel locus and fine-mapped many previously reported loci primarily due to 
the inclusion of African, North/South American, and East Asian samples(12). Still, the largest genetic 
studies of BMI continue to be carried out in European-only samples, such as the recent GIANT study, 
which reported 941 nearly independent loci for adult BMI(13). While several small studies of childhood 
and adult BMI have been published in non-European samples (e.g.(14–16)), future studies including 
large sample sizes from diverse ancestral backgrounds will yield additional discoveries. 

 

Insights into height growth from genetic studies 

In recent years, it has become clear that the genetic determinants of size at birth and height throughout 
childhood are correlated, with positive genetic correlations beginning with birth length and childhood 
height to final adult stature(4). Additionally, there is an enrichment of GWAS signals for adult height in 
DNAseI hypersensitivity sites in human embryonic stem cells(17), showing that these signals may act in 
early development, with an impact on growth throughout the life course. However, the correlation 
between the genetic determinants of birth weight and height is weaker during puberty(4), which may be 
explained by the impact of differences in the timing of puberty on height growth. Still, these findings 
suggest that many of the same genetic determinants of body length, in contrast to BMI, act throughout 
life.  



While few studies have been published recently investigating the genetic determinants of specific height 
growth phases, the GIANT consortium released a GWAS of adult stature including ~700,000 individuals 
and reporting 3200 loci associated with the trait(13). This data is providing insights into the mechanisms 
underlying growth; using expression quantitative trait locus (eQTL) data, 610 genes were prioritized as 
potentially causal for variation in height, and pathway analysis subsequently identified enrichment for 
skeletal growth and cartilage and connective tissue development. Further, height-associated GWAS 
signals were enriched in noncoding regulatory regions in the growth plates of long bones(18), which is 
intuitively plausible as a key effector tissue for mediating differences in stature. Other studies have 
noted enrichment in pathways relevant to growth, such as the TGFB and Hedgehog pathways in growth 
plate development(19), as well as growth hormone regulation(20). A Japanese study subsequently noted 
in a pathway comparison with the GIANT European study that the biological mechanisms regulating 
height growth are largely shared across populations(21), indicating that additional genetic insights could 
be gained by trans-ancestry approaches.  

Another axis becoming clear is the relationship between the genetic determinants of height and other 
skeletal traits, such as bone size, bone mineral density, and osteoarthritis(22,23). These studies suggest 
that the genetic determinants affecting variation in height also impact other aspects of endochondral 
ossification and bone biology(24,25), with implications for therapeutic development. Specific loci with 
potential clinical applications for later health include the GDF5 locus, associated with early growth, body 
size, and developmental traits (infant length(26), height at age 10 (UK Biobank(35)), bone size(22), and 
age at menarche(28)). This locus was originally associated with osteoarthritis in Asian populations(29) 
and adult height(30). In the past two years, however, additional GWAS and large-scale biobank 
phenome-wide association studies (PheWAS) have revealed a breadth of health outcomes across the life 
course associated with the GDF5 locus, including skeletal site-specific osteoarthritis(23,31), congenital 
hip dysplasia(32), internal derangement of the knee, monoarthritis, connective tissue disease, and 
bunions (SAIGE(33)), and knee pain(34). Furthermore, the causal SNP has been identified as well the 
mechanism by which noncoding variants differentially affect DNA methylation, transcription factor 
binding, and subsequent GDF5 expression level, with differential methylation between knee 
osteoarthritis samples when compared to other skeletal sites and non-osteoarthritis samples(35,36). 
GDF5 may thus play a role in tissue repair and remodeling(37) and is currently under development as a 
therapeutic target for osteoarthritis and cartilage regeneration(31,38). For most genetic association loci, 
much less is known about the causal variants, genes, and mechanisms by which they act, but recent 
developments in identifying lifelong effects for childhood growth loci such as GDF5 suggest that in the 
coming years, additional loci should yield insights of clinical relevance. 

 

Impact of early growth on lifelong health outcomes  

In addition to specific loci, GWAS summary results from across the genome can be informative for 
uncovering the causal relationships between early growth traits and future health outcomes. In the past 
few years, causal inference methods utilizing genetic variants, collectively termed Mendelian 
randomization (MR), have begun to investigate these associations. Briefly, to test for a causal 
relationship between an exposure and outcome of interest, MR uses genetic variants associated with 
the exposure as proxies (“instruments”) for that exposure. In contrast correlations between the 
measured exposure and outcome, a genetic association between the exposure instruments and the 



outcome of interest is unlikely to be subject to confounding or reverse-causality due to the random 
shuffling of alleles that occurs between parents and offspring, and can thus provide evidence supportive 
of causality, subject to various assumptions(39).  

While MR is a potentially powerful tool for determining causal factors that influence health-relevant 
outcomes, these studies need to be carried out with care, especially when aiming to examine causal 
relationships between fetal growth and later health outcomes. This is because (i) fetal growth is 
influenced by both maternal and fetal genetic effects(4,40), and (ii) available instruments are for birth 
weight, which is a crude proxy for fetal growth. Recently, studies using maternal genetic variants as 
instruments for in utero environmental exposures that lower birth weight (independent of fetal genetic 
effects) found no evidence that they are causally associated with adverse cardiometabolic health 
outcomes in adulthood, contrary to observational epidemiological associations(4,41). Explicit 
understanding of the precise exposure captured by genetic instruments is crucial for appropriate 
interpretation of such MR studies. For example, studies using fetal genotype effects on birth weight as 
instruments for fetal growth have, in contrast, observed associations with later adverse outcomes such 
as type 2 diabetes(42,43). Such associations may reflect (i) direct effects of an individual’s own genotype 
on their birth weight and on later health, as expected under the fetal insulin hypothesis(44), (ii) direct 
effects of the individual’s genotype on their own later health and correlation with maternal genotype 
effects on birth weight, as seen recently for blood pressure(4), or (iii) potentially, health effects 
secondary to fetal growth. However, under such study designs with fetal genotype instruments, it is not 
possible to separate possibility (iii) from (i) or (ii). 

While many studies have used MR to investigate the causal impact of adult stature on health outcomes, 
very few studies to date have assessed the causal impact of distinct childhood growth phases. One study 
investigated both childhood height and adult height, and found a separate influence of each on 
osteosarcoma risk(45). Indeed, in just the past 2 years, large studies taking a broad approach have 
implicated taller height as a causal factor for many health outcomes(24), whether increasing risk (such 
as for diagnosis with cancer and death from any cancer(46,47) and specific cancers (ovarian cancer(48); 
head and neck cancer(49); melanoma(50)), varicose veins(51), atrial fibrillation, venous 
thromboembolism, intervertebral disc disorder, hip fracture, and vasculitis(47). Taller stature also 
appears to have protective effects for other traits, in particular coronary artery disease(47,52). These 
relationships are sometimes complex, such as findings that taller height was causally related to ovarian 
cancer(47) in the general population, but not among premenopausal BRCA1/2 carriers(53). These 
divergent findings could also be due to specific limitations of each study, and further work is needed to 
gain clarity. Additionally, while very few have been carried out to date, studies are beginning to look at 
the impact of height on pediatric outcomes, such as ocular biometry at age 6 years(54), and in non-
European populations, e.g. on pulmonary traits in Latinos(55).  

 

Future priorities for genetic studies of early growth traits: diversity and mechanism 

To date, genetic investigations of birth weight have been performed predominantly in European 
ancestry samples, but low birth weight and associated adverse outcomes are often higher in non-
Europeans, e.g. in  South Asian or African ancestry(56); the reasons for these differences are not fully 
understood. The key priority for future GWAS efforts is to target large studies of other ancestral 
backgrounds, as these genetic studies will inform about both the heritable and environmental effects on 



birth weight. Indeed, a recent study examined birth weight, length, and ponderal index (PI) across 
geographic regions and found that while the contribution of genetic factors was smaller than 
environmental factors, genetic variance was similar across geographic regions(57). 

Aside from increasing diversity in future genetic studies of birth weight, there are further priorities for 
data aggregation and analysis that will improve our understanding of mechanisms. First, a limitation of 
the most recent GWAS of birth weight was that most samples did not have information on gestational 
age(4), so further large studies with both birth weight and gestational duration data will be necessary to 
understand which loci primarily influence birth timing vs. fetal growth. While initial indications were that 
only a few loci influence birth weight through a primary effect on gestational duration(4,58), the extent 
to which the remaining “growth” loci might in turn influence gestational duration is not known. Second, 
the integration of epigenetic data will help to inform on mechanisms. For example, DNA methylation 
may be influenced by environmental exposures, and may in turn influence gene expression. A recent 
epigenome-wide association study (EWAS) of birth weight in 8825 individuals identified more than 900 
differentially-methylated associated sites in neonatal blood(59). Another smaller EWAS (n=301) 
identified 15 differentially-methylated sites in placenta(60). By integrating such findings with GWAS 
data, future studies will be able to assess evidence of causal effects, and examination of relevant cells 
and tissues will also be important(61). Third, longitudinal antenatal studies are needed to gain a clearer 
understanding of the genetics of fetal growth. Multilevel models can be applied to ultrasound scan data 
to model fetal growth trajectories (62), and both the heritability of fetal growth measures(63) and the 
contribution of a fetal genetic score for birth weight to fetal growth are higher in later gestation(64).  
Applying GWAS to antenatal phenotypes should improve understanding of links between different 
growth trajectories and pregnancy outcomes. 

For childhood and adolescent growth, studies are needed to examine whether specific growth phases or 
trajectories more closely relate to adverse health outcomes. For instance, pubertal timing is correlated 
with many health outcomes, and variation in pubertal timing impacts the total amount and velocity of 
growth during adolescence(65). When dealing with anthropometric traits such as pubertal timing and 
height growth, BMI should also be taken into account, due to its close relationship with pubertal timing 
(for instance, in assessing the causal impact of prepubertal BMI and pubertal timing on cardiometabolic 
outcomes(66)). Furthermore, taking BMI into account as a mediator or confounder can even reverse 
causal relationships; for example, age at menarche had an inverse direct causal effect on risk of breast 
cancer independent of BMI while BMI itself had a positive indirect effect(67,68). 

Perhaps of most direct societal impact is the increasing understanding that elevated BMI impacts adult 
health beginning in childhood, with growing numbers of genetic studies also supporting the idea that 
efforts should be made to reduce childhood obesity rates to improve public health. In the past two 
years, MR approaches have implicated childhood BMI in risk for asthma(69) and coronary artery disease 
and type 2 diabetes(70,71), as well as childhood abdominal obesity on plasma triglycerides and other 
cardiometabolic risk factors(72). Importantly, there is some evidence that the impact of childhood 
adiposity can be mitigated by weight loss later in life(73). Here, also, there is a need for studies in non-
European population groups; standard obesity thresholds are not equally valid across ethnicities, with 
some ethnic group having higher disease risks at lower BMI thresholds than Europeans(74), and rates of 
adverse health outcomes, including BMI and cardiometabolic traits, vary by ethnicity(75). 

 



Conclusions 

Genetic studies of early growth phenotypes have recently made great progress in identifying underlying 
genetic loci, and analyses using these loci have begun to illuminate links with lifelong health. To further 
improve understanding in this field, key future priorities are the examination of growth trajectories 
through longitudinal study designs and a redoubled effort to study samples of diverse ancestries.  

Figure 1 

 

Figure Legend 

Figure 1. A schematic of genetic effects on growth traits, with color gradients showing the approximate 
timing of genetic effects based on current knowledge. Some questions remain, for example the extent 
to which maternal effects persist to adulthood, and which height variants act during postnatal, but not 
fetal, growth. In Mendelian randomization (MR) studies, adult height-associated variants have typically 
been used to create genetic instruments to test causality with health outcomes. For BMI, more work has 
been done using childhood BMI-associated variants (with some example outcomes shown here). AFIB, 
Atrial fibrillation. VT, venous thromboembolism. IDD, intervertebral disc disorder. CAD, coronary artery 
disease.  
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