22 research outputs found
The South Atlantic meridional overturning circulation and mesoscale eddies in the first GO-SHIP section at 34.5°S
This is the final version. Available from Wiley via the DOI in this record. The data from the MSM60 cruise are available at: https://doi.org/10.2312/cr_msm60. ADT data were downloaded from http://marine.copernicus.eu/, SST from https://podaac.jpl.nasa.gov/, eddy tracking from
https://vesg.ipsl.upmc.fr/thredds/catalog/IPSLFS/rlaxe/catalog.html?data set=DatasetScanIPSLFS/rlaxe/
Database_ South_Atl.zip. GO-SHIP datasets were downloaded from http://cchdo.ucsd.edu.The variability of the Atlantic meridional overturning circulation (AMOC) has considerable impacts on the global climate system. Past studies have shown that changes in the South Atlantic control the stability of the AMOC and drive an important part of its variability. That is why significant resources have been invested in a South (S)AMOC observing system. In January 2017, the RV Maria S. Merian conducted the first GO-SHIP hydrographic transect along the SAMOC-Basin Wide Array (SAMBA) line at 34.5°S in the South Atlantic. This paper presents estimates of meridional volume, freshwater (MFT), and heat (MHT) transports through the line using the slow varying geostrophic density field and direct velocity observations. An upper and an abyssal overturning cell are identified with a strength of 15.64 ± 1.39 Sv and 2.4 ± 1.6 Sv, respectively. The net northward MHT is 0.27 ± 0.10 PW, increasing by 0.12 PW when we remove the observed mesoscale eddies with a climatology derived from the Argo floats data set. We attribute this change to an anomalous predominance of cold core eddies during the cruise period. The highest velocities are observed in the western boundary, within the Brazil and the Deep Western Boundary currents. These currents appear as a continuous deep jet located 150 km off the slope squeezed between two cyclonic eddies. The zonal changes in water masses properties and velocity denote the imprint of exchange pathways with both the Southern and the Indian oceans.TOEddies CNES-TOSCASouth African NRFANII-Campus FranceCooperative Institute for Marine and Atmospheric Studies (CIMAS)NOAA Atlantic Oceanographic and Meteorological LaboratorySao Paulo State Research FoundationSouth African National Research FoundationGerman Federal Ministry of Education and Research (BMBF)Department of Environment, Forestry and Fisherie
Kinetics of superoxide reactions with dissolved organic matter in tropical Atlantic surface waters near Cape Verde (TENATSO)
The decay kinetics of superoxide (O2−) reacting with organic matter was examined in oligotrophic waters at, and nearby, the TENATSO ocean observatory adjacent to the Cape Verde archipelago. Superoxide is the short-lived primary photochemical product of colored dissolved organic matter (CDOM) photolysis and also reacts with CDOM or trace metals (Cu, Fe) to form H2O2. In the present work we focused our investigations on reactions between CDOM and superoxide. O2− decay kinetics experiments were performed by adding KO2 to diethylenetriaminepentaacetic acid (DTPA) amended seawater and utilizing an established chemiluminescence technique for the detection of O2− at nM levels. In Cape Verdean waters we found a significant reactivity of superoxide with CDOM with maximal rates adjacent to the chlorophyll maximum, presumably from production of new CDOM from bacteria/phytoplankton. This work highlights a poorly understood process which impacts on the biogeochemical cycling of CDOM and trace metals in the open ocean
Basin scale survey of marine humic fluorescence in the Atlantic: relationship to iron solubility and H2O2
Iron (Fe) is a limiting nutrient for phytoplankton productivity in many different oceanic regions. A critical aspect underlying iron limitation is its low solubility in seawater as this controls the distribution and transport of iron through the ocean. Processes which enhance the solubility of iron in seawater, either through redox reactions or organic complexation, are central to understanding the biogeochemical cycling of iron. In this work we combined iron solubility measurements with parallel factor (PARAFAC) data analysis of CDOM fluorescence along a meridional transect through the Atlantic (PS ANT XXVI-4) to examine the hypothesis that marine humic fluorescence is a potential proxy for iron solubility in the surface ocean. PARAFAC analysis revealed 4 components, two humic like substances and two protein-like. Overall none of the 4 components were significantly correlated with iron solubility, though humic-like components were weakly correlated with iron solubility in iron replete waters. Our analysis suggests that the ligands responsible for maintaining iron in solution in the euphotic zone are sourced from both remineralisation processes and specific ligands produced in response to iron stress and are not easily related to bulk CDOM properties. The humic fluorescence signal was sharply attenuated in surface waters presumably most likely due to photo bleaching, though there was only a weak correlation with the transient photo product H2O2, suggesting longer lifetimes in the photic zone for the fluorescent components identified here.
Key Points:
- humic-like components correlated with Fe solubility in iron repleted water
- ligands are sourced from remineralisation processes produced to Fe stress
- humic flu sharply attenuated in surface waters, but only weak corr. with H2O
Anthropogenic perturbation of the carbon fluxes from land to ocean
A substantial amount of the atmospheric carbon taken up on land through photosynthesis and chemical weathering is transported laterally along the aquatic continuum from upland terrestrial ecosystems to the ocean. So far, global carbon budget estimates have implicitly assumed that the transformation and lateral transport of carbon along this aquatic continuum has remained unchanged since pre-industrial times. A synthesis of published work reveals the magnitude of present-day lateral carbon fluxes from land to ocean, and the extent to which human activities have altered these fluxes. We show that anthropogenic perturbation may have increased the flux of carbon to inland waters by as much as 1.0 Pg C yr-1 since pre-industrial times, mainly owing to enhanced carbon export from soils. Most of this additional carbon input to upstream rivers is either emitted back to the atmosphere as carbon dioxide (~0.4 Pg C yr-1) or sequestered in sediments (~0.5 Pg C yr-1) along the continuum of freshwater bodies, estuaries and coastal waters, leaving only a perturbation carbon input of ~0.1 Pg C yr-1 to the open ocean. According to our analysis, terrestrial ecosystems store ~0.9 Pg C yr-1 at present, which is in agreement with results from forest inventories but significantly differs from the figure of 1.5 Pg C yr-1 previously estimated when ignoring changes in lateral carbon fluxes. We suggest that carbon fluxes along the land–ocean aquatic continuum need to be included in global carbon dioxide budgets.Peer reviewe
Understanding the relation between Zika virus infection during pregnancy and adverse fetal, infant and child outcomes: a protocol for a systematic review and individual participant data meta-analysis of longitudinal studies of pregnant women and their infants and children
IntroductionZika virus (ZIKV) infection during pregnancy is a known cause of microcephaly and other congenital and developmental anomalies. In the absence of a ZIKV vaccine or prophylactics, principal investigators (PIs) and international leaders in ZIKV research have formed the ZIKV Individual Participant Data (IPD) Consortium to identify, collect and synthesise IPD from longitudinal studies of pregnant women that measure ZIKV infection during pregnancy and fetal, infant or child outcomes.Methods and analysisWe will identify eligible studies through the ZIKV IPD Consortium membership and a systematic review and invite study PIs to participate in the IPD meta-analysis (IPD-MA). We will use the combined dataset to estimate the relative and absolute risk of congenital Zika syndrome (CZS), including microcephaly and late symptomatic congenital infections; identify and explore sources of heterogeneity in those estimates and develop and validate a risk prediction model to identify the pregnancies at the highest risk of CZS or adverse developmental outcomes. The variable accuracy of diagnostic assays and differences in exposure and outcome definitions means that included studies will have a higher level of systematic variability, a component of measurement error, than an IPD-MA of studies of an established pathogen. We will use expert testimony, existing internal and external diagnostic accuracy validation studies and laboratory external quality assessments to inform the distribution of measurement error in our models. We will apply both Bayesian and frequentist methods to directly account for these and other sources of uncertainty.Ethics and disseminationThe IPD-MA was deemed exempt from ethical review. We will convene a group of patient advocates to evaluate the ethical implications and utility of the risk stratification tool. Findings from these analyses will be shared via national and international conferences and through publication in open access, peer-reviewed journals.Trial registration numberPROSPERO International prospective register of systematic reviews (CRD42017068915).</jats:sec
Numerical assessment of tidal potential energy in the Brazilian Equatorial Shelf
The Brazilian Equatorial Shelf (BES) is one among the macrotidal regions worldwide. This study used a high-resolution numerical configuration of the ocean model ROMS (Regional Ocean Modeling System) forced with realistic surface and lateral forcing, as well as with tides and river discharges. Tidal heights of more than 2 m were found in three regions in BES due to the large tidal amplification across the estuarine channels inside each region: Amazon, Pará, and Maranhão, and for a considerable time fraction. Heights between 4 and 5 m occurred with a frequency greater than 20%–30% in some regions. All hypothetical barrages proposed in this study were capable of an annual power production, in two-way mode, higher than La Rance (533 GWh year, two-way operation, France) and Sihwa (553 GWh year, flood-only operation, South Korea), except one with the same production as Sihwa barrage. The installation effort was evaluated using the Gibrat ratio, the ratio between the length of the barrage and its annual energy production. Among the proposed barrages, the most efficient ones have an annual power generation greater than 1500 GWh year and a Gibrat ratios between 1.17 and 3.26, much lower than the Gibrat ratio of Sihwa tidal barrage.This work was financially supported by PETROBRAS, Brazil and the Brazilian oil regulatory agency ANP (Agência Nacional de Petróleo, Gás Natural e Biocombustíveis), within the special participation research project Rede de Modelagem e Observação Oceanográfica (REMO). Research grants (no: 151427/2020-8 and 380293/2022-6) were offered by the Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). Research grant no: 380293/2022-6 was within the scope of the project Rede Brasileira de Pesquisas sobre Mudanças Climáticas Globais (Rede Clima). M. Marta-Almeida was supported by European Union Atlantic Area Interreg project iFADO (EAPA/165_2016) and by project BlueForesting (PT-INNOVATION-0077) financed by the EEA Grants. Letícia Cotrim da Cunha acknowledges the following research grants: CNPq/PQ-2 309708/2021-4 from Brazilian Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq); FAPERJ/CNE SEI260003/003524/2022 from Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ); and UERJ Prociência 2021–2024