1,587 research outputs found

    Using Implementation Mapping to increase Uptake and Use of Salud En Mis Manos: a Breast and Cervical Cancer Screening and Hpv Vaccination intervention For Latinas

    Get PDF
    BACKGROUND: Despite CDC recommendations for breast and cervical cancer screening and HPV vaccination, cancer control behaviors are underutilized among low-income Latinas. METHODS: We used Implementation Mapping to create SEMM-Dissemination and Implementation Assistance (SEMM-DIA), a set of implementation strategies designed to support implementation and maintenance of SEMM in clinic settings. Specifically, we used Implementation Mapping\u27s five iterative tasks to guide the use of theories and frameworks, evidence, new data, and stakeholder input to develop strategies to accelerate and improve implementation fidelity, reach, and maintenance of the SEMM intervention. The resulting implementation mapping logic model also guides the SEMM-DIA evaluation plan to assess reach, effectiveness, implementation, and maintenance. DISCUSSION: Increased use of implementation planning frameworks is necessary to accelerate the translation of EBIs to public health practice. This work demonstrates the application of Implementation Mapping to develop SEMM-DIA, providing a model for the development of other implementation strategies to support translation of evidence-based health promotion interventions into clinic settings

    Development of an Anthropomorphic Phantom of the Axillary Region for Microwave Imaging Assessment

    Get PDF
    We produced an anatomically and dielectrically realistic phantom of the axillary region to enable the experimental assessment of Axillary Lymph Node (ALN) imaging using microwave imaging technology. We segmented a thoracic Computed Tomography (CT) scan and created a computer-aided designed file containing the anatomical configuration of the axillary region. The phantom comprises five 3D-printed parts representing the main tissues of interest of the axillary region for the purpose of microwave imaging: fat, muscle, bone, ALNs, and lung. The phantom allows the experimental assessment of multiple anatomical configurations, by including ALNs of different size, shape, and number in several locations. Except for the bone mimicking organ, which is made of solid conductive polymer, we 3D-printed cavities to represent the fat, muscle, ALN, and lung and filled them with appropriate tissue-mimicking liquids. Existing studies about complex permittivity of ALNs have reported limitations. To address these, we measured the complex permittivity of both human and animal lymph nodes using the standard open-ended coaxial-probe technique, over the 0.5 GHz-8.5 GHz frequency band, thus extending current knowledge on dielectric properties of ALNs. Lastly, we numerically evaluated the effect of the polymer which constitutes the cavities of the phantom and compared it to the realistic axillary region. The results showed a maximum difference of 7 dB at 4 GHz in the electric field magnitude coupled to the tissues and a maximum of 10 dB difference in the ALN response. Our results showed that the phantom is a good representation of the axillary region and a viable tool for pre-clinical assessment of microwave imaging technology.info:eu-repo/semantics/publishedVersio

    Trophic position and foraging ecology of Ross, Weddell, and crabeater seals revealed by compound-specific isotope analysis

    Get PDF
    Ross seals Ommatophoca rossii are one of the least studied marine mammals, with little known about their foraging ecology. Research to date using bulk stable isotope analysis suggests that Ross seals have a trophic position intermediate between that of Weddell Leptonychotes weddellii and crabeater Lobodon carcinophaga seals. However, consumer bulk stable isotope values not only reflect trophic dynamics, but also variations in baseline isotope values, which can be substantial. We used compound-specific isotope analysis of amino acids (CSI-AA) to separate isotopic effects of a shifting baseline versus trophic structure on the foraging ecology of these ecologically important Antarctic pinnipeds. We found that Ross seals forage in an open ocean food web, while crabeater and Weddell seals forage within similar food webs closer to shore. However, isotopic evidence suggests that crabeater seals are likely following sea ice, while Weddell seals target productive areas of the continental shelf of West Antarctica. Our CSI-AA data indicate that Ross seals have a high trophic position equivalent to that of Weddell seals, contrary to prior conclusions from nitrogen isotope results on bulk tissues. CSI-AA indicates that crabeater seals are at a trophic position lower than that of Ross and Weddell seals, consistent with a krill-dominated diet. Our results redefine the view of the trophic dynamics and foraging ecology of the Ross seal, and also highlight the importance of quantifying baseline isotope variations in foraging studies

    Cx43 Overexpression in Osteocytes Prevents Osteocyte Apoptosis and Preserves Cortical Bone Quality in Aging Mice

    Get PDF
    Young, skeletally mature mice lacking Cx43 in osteocytes exhibit increased osteocyte apoptosis and decreased bone strength, resembling the phenotype of old mice. Further, the expression of Cx43 in bone decreases with age, suggesting a contribution of reduced Cx43 levels to the age-related changes in the skeleton. We report herein that Cx43 overexpression in osteocytes achieved by using the DMP1-8kb promoter (Cx43OT mice) attenuates the skeletal cortical but not trabecular bone phenotype of aged, 14-month-old mice. The percentage of Cx43-expressing osteocytes was higher in Cx43OT mice, whereas the percentage of Cx43-positive osteoblasts remained similar to wild-type (WT) littermate control mice. The percentage of apoptotic osteocytes and osteoblasts was increased in aged WT mice compared with skeletally mature, 6-month-old WT mice, and the percentage of apoptotic osteocytes, but not osteoblasts, was decreased in age-matched Cx43OT mice. Aged WT mice exhibited decreased bone formation and increased bone resorption as quantified by histomorphometric analysis and circulating markers compared with skeletally mature mice. Further, aged WT mice exhibited the expected decrease in bone biomechanical structural and material properties compared with young mice. Cx43 overexpression prevented the increase in osteoclasts and decrease in bone formation on the endocortical surfaces and the changes in circulating markers in the aged mice. Moreover, the ability of bone to resist damage was preserved in aged Cx43OT mice both at the structural and material level. All together, these findings suggest that increased Cx43 expression in osteocytes ameliorates age-induced cortical bone changes by preserving osteocyte viability and maintaining bone formation, leading to improved bone strength. © 2018 American Society for Bone and Mineral Research

    Age- and sex-dependent role of osteocytic pannexin1 on bone and muscle mass and strength

    Get PDF
    Pannexins (Panxs), glycoproteins that oligomerize to form hemichannels on the cell membrane, are topologically similar to connexins, but do not form cell-to-cell gap junction channels. There are 3 members of the family, 1-3, with Panx1 being the most abundant. All Panxs are expressed in bone, but their role in bone cell biology is not completely understood. We now report that osteocytic Panx1 deletion (Panx1Δot) alters bone mass and strength in female mice. Bone mineral density after reaching skeletal maturity is higher in female Panx1Δot mice than in control Panx1fl/fl mice. Further, osteocytic Panx1 deletion partially prevented aging effects on cortical bone structure and mechanical properties. Young 4-month-old female Panx1Δot mice exhibited increased lean body mass, even though pannexin levels in skeletal muscle were not affected; whereas no difference in lean body mass was detected in male mice. Furthermore, female Panx1-deficient mice exhibited increased muscle mass without changes in strength, whereas Panx1Δot males showed unchanged muscle mass and decreased in vivo maximum plantarflexion torque, indicating reduced muscle strength. Our results suggest that osteocytic Panx1 deletion increases bone mass in young and old female mice and muscle mass in young female mice, but has deleterious effects on muscle strength only in males

    Observations of MeV electrons in Jupiter's innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3

    Get PDF
    Juno's "Perijove 1" (27 August 2016) and "Perijove 3" (11 December 2016) flybys through the innermost region of Jupiter's magnetosphere (radial distances J at closest approach) provided the first in situ look at this region's radiation environment. Juno's Radiation Monitoring Investigation collected particle counts and noise signatures from penetrating high-energy particle impacts in images acquired by the Stellar Reference Unit and Advanced Stellar Compass star trackers, and the Jupiter Infrared Auroral Mapper infrared imager. This coordinated observation campaign sampled radiation at the inner edges of the high-latitude lobes of the synchrotron emission region and more distant environments. Inferred omnidirectional >5 MeV and >10 MeV electron fluxes derived from these measurements provide valuable constraints for models of relativistic electron environments in the inner radiation belts. Several intense bursts of high-energy particle counts were also observed by the Advanced Stellar Compass in polar regions outside the radiation belts

    MINDMAP : establishing an integrated database infrastructure for research in ageing, mental well-being, and the urban environment

    Get PDF
    Background: Urbanization and ageing have important implications for public mental health and well-being. Cities pose major challenges for older citizens, but also offer opportunities to develop, test, and implement policies, services, infrastructure, and interventions that promote mental well-being. The MINDMAP project aims to identify the opportunities and challenges posed by urban environmental characteristics for the promotion and management of mental well-being and cognitive function of older individuals. Methods: MINDMAP aims to achieve its research objectives by bringing together longitudinal studies from 11 countries covering over 35 cities linked to databases of area-level environmental exposures and social and urban policy indicators. The infrastructure supporting integration of this data will allow multiple MINDMAP investigators to safely and remotely co-analyse individual-level and area-level data. Individual-level data is derived from baseline and follow-up measurements of ten participating cohort studies and provides information on mental well-being outcomes, sociodemographic variables, health behaviour characteristics, social factors, measures of frailty, physical function indicators, and chronic conditions, as well as blood derived clinical biochemistry-based biomarkers and genetic biomarkers. Area-level information on physical environment characteristics (e.g. green spaces, transportation), socioeconomic and sociodemographic characteristics (e.g. neighbourhood income, residential segregation, residential density), and social environment characteristics (e.g. social cohesion, criminality) and national and urban social policies is derived from publically available sources such as geoportals and administrative databases. The linkage, harmonization, and analysis of data from different sources are being carried out using piloted tools to optimize the validity of the research results and transparency of the methodology. Discussion: MINDMAP is a novel research collaboration that is combining population-based cohort data with publicly available datasets not typically used for ageing and mental well-being research. Integration of various data sources and observational units into a single platform will help to explain the differences in ageing-related mental and cognitive disorders both within as well as between cities in Europe, the US, Canada, and Russia and to assess the causal pathways and interactions between the urban environment and the individual determinants of mental well-being and cognitive ageing in older adults.Peer reviewe

    Terahertz time-domain spectroscopy for the analysis of latex film formation

    Get PDF
    The subject of latex film formation has been studied for many years and it is known to be affected by many environmental conditions such as evaporation rate, polymer glass transition temperature, T g, and particle size. Understanding latex film formation is particularly relevant to the paint industry, to ensure even coated films. In this study, THz-TDS was used to analyze various latex solutions with different polymer glass transition temperatures and particle sizes. 2D water distribution maps were produced, as a function of drying time, to monitor latex drying processes such as the ‘coffee-ring effect’

    Citalopram reduces aggregation of ATXN3 in a YAC transgenic mouse model of Machado-Joseph disease

    Get PDF
    Machado-Joseph disease, also known as spinocerebellar ataxia type 3, is a fatal polyglutamine disease with no disease-modifying treatment. The selective serotonin reuptake inhibitor citalopram was shown in nematode and mouse models to be a compelling repurposing candidate for Machado-Joseph disease therapeutics. We sought to confirm the efficacy of citalopram to decrease ATXN3 aggregation in an unrelated mouse model of Machado-Joseph disease. Four-week-old YACMJD84.2 mice and non-transgenic littermates were given citalopram 8 mg/kg in drinking water or water for 10 weeks. At the end of treatment, brains were collected for biochemical and pathological analyses. Brains of citalopram-treated YACMJD84.2 mice showed an approximate 50% decrease in the percentage of cells containing ATXN3-positive inclusions in the substantia nigra and three examined brainstem nuclei compared to controls. No differences in ATXN3 inclusion load were observed in deep cerebellar nuclei of mice. Citalopram effect on ATXN3 aggregate burden was corroborated by immunoblotting analysis. While lysates from the brainstem and cervical spinal cord of citalopram-treated mice showed a decrease in all soluble forms of ATXN3 and a trend toward reduction of insoluble ATXN3, no differences in ATXN3 levels were found between cerebella of citalopram-treated and vehicle-treated mice. Citalopram treatment altered levels of select components of the cellular protein homeostatic machinery that may be expected to enhance the capacity to refold and/or degrade mutant ATXN3. The results here obtained in a second independent mouse model of Machado-Joseph disease further support citalopram as a potential drug to be repurposed for this fatal disorder.This work was funded by Becky Babcox Research Fund/pilot research award G015617, University of Michigan to M.C.C. and NINDS/NIH R01NS038712 to H.L.P. The work performed at the University of Minho was funded by the European Regional Development Funds (FEDER), through the Competitiveness Factors Operational Programme (COMPETE), and by National funds, through the Foundation for Science and Technology (FCT), under the scope of the project POCI-01-0145-FEDER-007038. This article was developed under the scope of the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Program (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the FEDER. This work was also supported by FCT and COMPETE through the projects [PTDC/SAU-GMG/112617/2009] (to P.M.) and [EXPL/BIM-MEC/ 0239/2012] (to A.T.C.); by FCT through the project [POCI-01-0145- FEDER-016818 (PTDC/NEU-NMC/3648/2014)] (to P.M.); by National Ataxia Foundation (to P.M. and to A.T.C.); and by Ataxia UK (to P.M.). S.D.S. and A.T.C. were supported by fellowships from FCT, SFRH/BD/ 78388/2011 and SFRH/BPD/102317/2014, respectively. FCT fellowships are co-financed by POPH, QREN, Governo da República Portuguesa and EU/FSE

    Macrophage fumarate hydratase restrains mtRNA-mediated interferon production

    Get PDF
    Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-β production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses
    corecore